Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Protoplasma ; 252(4): 1181-5, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25534259

ABSTRACT

The morphology and diffusional water permeability (P d) of red blood cells (RBCs) from green sea turtle (GST) (Chelonia mydas) are presented for the first time. The RBCs had an ellipsoidal shape with full-axis lengths (diameters): D = 14.4 µm; d = 10.2 µm; h = 2.8 µm. The values of P d (cm s(-1)) were 5.1 × 10(-3) at 15 °C, 5.7 × 10(-3) at 20 °C, 6.3 × 10(-3) at 25 °C, 6.8 × 10(-3) at 30 °C, and 7.9 × 10(-3) at 37 °C (i.e., significantly higher than in human RBCs in which it was measured to be 4.2 × 10(-3) at 25 °C, 5.0 × 10(-3) at 30 °C, and 6.2 × 10(-3) at 37 °C). There was a lack of inhibition of P d of GST RBCs by p-chloromercuribenzoate (PCMB), a well-known inhibitor of the RBC water channel proteins (WCPs). The activation energy of water diffusion (E a,d) in GST RBCs was 15.0 ± 1.6 kJ mol(-1) which is lower than the E a,d for human RBCs (~25 kJ mol(-1)). These results indicate that in the membrane of GST RBCs, there were no WCPs that were inhibited by the mercurial reagent, while the lipid bilayer of this membrane is unusually permeable to water. This is likely to be a phylogenetically old trait, like that found in amphibians and even the later birds, all of which have nucleated erythrocytes; and it is also likely to be a result of the animal's adaptation to a herbivorous diet (algae and seagrasses).


Subject(s)
Erythrocytes/metabolism , Turtles/metabolism , Water/metabolism , Animals , Cell Membrane Permeability/physiology
2.
Micron ; 42(4): 336-41, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20933427

ABSTRACT

The idea of a bacterial cytoskeleton arose just 10 years ago with the identification of the cell division protein, FtsZ, as a tubulin homolog. FtsZ plays a pivotal role in bacterial division, and is present in virtually all prokaryotes and in some eukaryotic organelles. The earliest stage of bacterial cell division is the assembly of FtsZ into a Z ring at the division site, which subsequently constricts during cytokinesis. FtsZ also assembles into dynamic helical structures along the bacterial cell, which are thought to act as precursors to the Z ring via a cell cycle-mediated FtsZ polymer remodelling. The fine structures of the FtsZ helix and ring are unknown but crucial for identifying the molecular details of Z ring assembly and its regulation. We now reveal using STED microscopy that the FtsZ helical structure in cells of the gram positive bacterium, Bacillus subtilis, is a highly irregular and discontinuous helix of FtsZ; very different to the smooth cable-like appearance observed by conventional fluorescence optics. STED also identifies a novel FtsZ helical structure of smaller pitch that is invisible to standard optical methods, identifying a possible third intermediate in the pathway to Z ring assembly, which commits bacterial cells to divide.


Subject(s)
Bacterial Proteins/ultrastructure , Cytokinesis/physiology , Cytoskeletal Proteins/ultrastructure , Microscopy/methods , Bacillus subtilis/physiology , Cell Division/physiology , Cytoskeleton/physiology
3.
Cell Biol Int ; 34(7): 703-8, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20187871

ABSTRACT

As part of a programme of comparative measurements of Pd (diffusional water permeability) the RBCs (red blood cells) from an aquatic monotreme, platypus (Ornithorhynchus anatinus), and an aquatic reptile, saltwater crocodile (Crocodylus porosus) were studied. The mean diameter of platypus RBCs was estimated by light microscopy and found to be approximately 6.3 microm. Pd was measured by using an Mn2+-doping 1H NMR (nuclear magnetic resonance) technique. The Pd (cm/s) values were relatively low: approximately 2.1 x 10(-3) at 25 degrees C, 2.5 x 10(-3) at 30 degrees C, 3.4 x 10(-3) at 37 degrees C and 4.5 at 42 degrees C for the platypus RBCs and approximately 2.8 x 10(-3) at 25 degrees C, 3.2 x 10(-3) at 30 degrees C, 4.5 x 10(-3) at 37 degrees C and 5.7 x 10(-3) at 42 degrees C for the crocodile RBCs. In parallel with the low water permeability, the Ea,d (activation energy of water diffusion) was relatively high, approximately 35 kJ/mol. These results suggest that "conventional" WCPs (water channel proteins), or AQPs (aquaporins), are probably absent from the plasma membranes of RBCs from both the platypus and the saltwater crocodile.


Subject(s)
Alligators and Crocodiles/blood , Cell Membrane Permeability/physiology , Erythrocyte Membrane/metabolism , Erythrocytes , Magnetic Resonance Spectroscopy/methods , Platypus/blood , Water/metabolism , Animals , Diffusion , Erythrocytes/cytology , Erythrocytes/metabolism , Humans
4.
Cell Biol Int ; 34(4): 373-8, 2010 Mar 08.
Article in English | MEDLINE | ID: mdl-19947930

ABSTRACT

As part of a programme of comparative measurements of Pd (diffusional water permeability) the RBCs (red blood cells) from dingo (Canis familiaris dingo) and greyhound dog (Canis familiaris) were studied. The morphologies of the dingo and greyhound RBCs [examined by light and SEM (scanning electron microscopy)] were found to be very similar, with regard to aspect ratio and size; the mean diameters were estimated to be the same (approximately 7.2 microm) for both dingo and greyhound RBCs. The water diffusional permeability was monitored by using an Mn2+-doping 1H NMR technique at 400 MHz. The Pd (cm/s) values of dingo and greyhound RBCs were similar: 6.5 x 10(-3) at 25 degrees C, 7.5 x 10(-3) at 30 degrees C, 10 x 10(-3) at 37 degrees C and 11.5 x 10(-3) at 42 degrees C. The inhibitory effect of a mercury-containing SH (sulfhydryl)-modifying reagent PCMBS (p-chloromercuribenzene sulfonate) was investigated. The maximal inhibition of dingo and greyhound RBCs was reached in 15-30 min at 37 degrees C with 2 mmol/l PCMBS. The values of maximal inhibition were in the range 72-74% when measured at 25 degrees C and 30 degrees C, and approximately 66% at 37 degrees C. The lowest value of Pd (corresponding to the basal permeability to water) was approximately 2-3 x 10(-3) cm/s in the temperature range 25-37 degrees C. The Ea,d (activation energy of water diffusion) was 25 kJ/mol for dingo RBC and 23 kJ/mol for greyhound RBCs. After incubation with PCMBS, the values of Ea,d increased, reaching 46-48 kJ/mol in the condition of maximal inhibition of water exchange. The electrophoretograms of membrane polypeptides of the dingo and greyhound RBCs were compared and seen to be very similar. We postulate that the RBC parameters reported in the present study are characteristic of all canine species and, in particular in the two cases presented here, these parameters have not been changed by the peculiar Australian habitat over the millennia (as in the case of the dingo) or over shorter time periods, decades or centuries (as in the case of the domestic greyhound).


Subject(s)
Cell Membrane Permeability/physiology , Erythrocytes/metabolism , Water/metabolism , Animals , Diffusion , Dogs , Magnetic Resonance Spectroscopy , Membrane Proteins/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...