Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Methods Mol Biol ; 2829: 3-11, 2024.
Article in English | MEDLINE | ID: mdl-38951323

ABSTRACT

Healthy insect cell cultures are critical for any method described in this book, including making productive baculovirus banks, protein or AAV expression, and determining viral titers. This chapter describes cell maintenance in shake flasks using serum-free conditions and the expansion of virus stocks from a single plaque purified virus. Insect cells can be passaged over multiple generations, but as the cells may undergo changes over multiple passages, limiting the use of your cells to a defined number of passages such as 50 passages is recommendable. Baculovirus stocks once created using serum-free media are not very stable at 4-8 °C. This chapter also includes a simple method to store cells from an early cell passage and your virus stock in liquid nitrogen.


Subject(s)
Baculoviridae , Cell Culture Techniques , Animals , Baculoviridae/genetics , Cell Culture Techniques/methods , Insecta/virology , Insecta/cytology , Cell Line
2.
Hum Vaccin Immunother ; 18(4): 2096964, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35852928
3.
Hum Vaccin Immunother ; 18(4): 2096963, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35852932
4.
Vaccines (Basel) ; 9(12)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34960250

ABSTRACT

The insect cell expression system has previously been proposed as the preferred biosecurity strategy for production of any vaccine, particularly for future influenza pandemic vaccines. The development and regulatory risk for new vaccine candidates is shortened as the platform is already in use for the manufacturing of the FDA-licensed seasonal recombinant influenza vaccine Flublok®. Large-scale production capacity is in place and could be used to produce other antigens as well. However, as demonstrated by the 2019 SARS-CoV-2 pandemic the insect cell expression system has limitations that need to be addressed to ensure that recombinant antigens will indeed play a role in combating future pandemics. The greatest challenge may be the ability to produce an adequate quantity of purified antigen in an accelerated manner. This review summarizes recent innovations in technology areas important for enhancing recombinant-protein production levels and shortening development timelines. Opportunities for increasing product concentrations through vector development, cell line engineering, or bioprocessing and for shortening timelines through standardization of manufacturing processes will be presented.

5.
Adv Biochem Eng Biotechnol ; 175: 71-92, 2021.
Article in English | MEDLINE | ID: mdl-29886511

ABSTRACT

The insect cell-baculovirus expression system technology (BEST) has a prominent role in producing recombinant proteins to be used as research and diagnostic reagents and vaccines. The glycosylation profile of proteins produced by the BEST is composed predominantly of terminal mannose glycans, and, in Trichoplusia ni cell lines, core α3 fucosylation, a profile different to that in mammals. Insects contain all the enzymatic activities needed for complex N- and O-glycosylation and sialylation, although few reports of complex glycosylation and sialylation by the BEST exist. The insect cell line and culture conditions determine the glycosylation profile of proteins produced by the BEST. The promoter used, dissolved oxygen tension, presence of sugar precursors, bovine serum or hemolymph, temperature, and the time of harvest all influence glycosylation, although more research is needed. The lack of activity of glycosylation enzymes possibly results from the transcription regulation and stress imposed by baculovirus infection. To solve this limitation, the glycosylation pathway of insect cells has been engineered to produce complex sialylated glycans and to eliminate α3 fucosylation, either by generating transgenic cell lines or by using baculovirus vectors. These strategies have been successful. Complex glycosylation, sialylation, and inhibition of α3 fucosylation have been achieved, although the majority of glycans still have terminal mannose residues. The implication of insect glycosylation in the proteins produced by the BEST is discussed. Graphical Abstract.


Subject(s)
Baculoviridae , Insecta , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Cattle , Glycosylation , Insecta/metabolism , Recombinant Proteins/genetics , Technology
7.
Pediatrics ; 141(5)2018 05.
Article in English | MEDLINE | ID: mdl-29610401

ABSTRACT

OBJECTIVES: The recombinant influenza vaccine is well established in adults ≥18 years of age for preventing seasonal influenza disease. In this randomized controlled trial, we compared the safety and immunogenicity of the quadrivalent, recombinant influenza vaccine (RIV4) versus the inactivated influenza vaccine in children and adolescents 6 to 17 years of age. METHODS: Two age cohorts were enrolled sequentially: 159 subjects aged 9 to 17 years and, after reviewing for safety, 60 children aged 6 to 8 years. Enrollment of the younger children was halted prematurely at the onset of the influenza season. Subjects in each cohort were randomly assigned 1:1 to the RIV4 or inactivated vaccine. Hemagglutination inhibition antibody titers were obtained before and 28 days after vaccination. Tolerability and safety were monitored for 7 days and 6 months after vaccination, respectively. RESULTS: Both vaccines were well tolerated in both age groups, and long-term follow-up revealed no vaccine-related adverse events. Overall, immunogenicity (geometric mean titers and seroconversion rate differences) provided comparable antibody responses to most antigens in both vaccines in the older subjects. Low responses to the influenza B Victoria lineage in both vaccines made interpretation difficult. Immunogenicity in younger children was similar, but the truncated sample size was insufficient to support noninferiority comparisons. CONCLUSIONS: Despite low responses to influenza B lineages in both vaccines, the RIV4 provided safety and immunogenicity that were comparable to those of the licensed inactivated vaccine in pediatric subjects, which was most convincing in those aged 9 to 17 years. Future confirmatory clinical efficacy trials may be used to support the recombinant influenza vaccine as an alternative for the pediatric age group of ≥6 years.


Subject(s)
Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Adolescent , Antibody Formation/immunology , Child , Equivalence Trials as Topic , Female , Hemagglutination Inhibition Tests , Humans , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Male , Seroconversion , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology , Vaccines, Inactivated/therapeutic use , Vaccines, Synthetic/therapeutic use
8.
mSphere ; 2(6)2017.
Article in English | MEDLINE | ID: mdl-29242836

ABSTRACT

Human influenza virus infections with avian subtype H7N9 viruses are a major public health concern and have encouraged the development of effective H7 prepandemic vaccines. In this study, baseline and postvaccination serum samples of individuals aged 18 years and older who received a recombinant H7 hemagglutinin vaccine with and without an oil-in-water emulsion (SE) adjuvant were analyzed using a panel of serological assays. While only a small proportion of individuals seroconverted to H7N9 as measured by the conventional hemagglutination inhibition assay, our data show strong induction of anti-H7 hemagglutinin antibodies as measured by an enzyme-linked immunosorbent assay (ELISA). In addition, cross-reactive antibodies against phylogenetically distant group 2 hemagglutinins were induced, presumably targeting the conserved stalk domain of the hemagglutinin. Further analysis confirmed an induction of stalk-specific antibodies, suggesting that epitopes outside the classical antigenic sites are targeted by this vaccine in the context of preexisting immunity to related H3 hemagglutinin. Antibodies induced by H7 vaccination also showed functional activity in antibody-dependent cell-mediated cytotoxicity reporter assays and microneutralization assays. Additionally, our data show that sera from hemagglutination inhibition seroconverters conferred protection in a passive serum transfer experiment against lethal H7N9 virus challenge in mice. Interestingly, sera from hemagglutination inhibition nonseroconverters also conferred partial protection in the lethal animal challenge model. In conclusion, while recombinant H7 vaccination fails to induce measurable levels of hemagglutination-inhibiting antibodies in most subjects, this vaccination regime induces homosubtypic and heterosubtypic cross-reactive binding antibodies that are functional and partly protective in a murine passive transfer challenge model. IMPORTANCE Zoonotic infections with high case fatality rates caused by avian H7N9 influenza viruses have been reported since early 2013 in China. Since then, the fifth wave of the H7N9 epidemic emerged in China, resulting in higher numbers of laboratory-confirmed cases than in previous years. Recently, H7N9 has started to antigenically drift and split into two new lineages, the Pearl River Delta and Yangtze River Delta clades, which do not match stockpiled H7 vaccines well. Humans are immunologically naive to these subtypes, and an H7N9 strain that acquires the capability of efficient human-to-human transmission poses a credible pandemic threat. Other characteristics of H7N9 are raising concerns as well, like its ability to bind to receptors in the human upper respiratory tract, the recent emergence of highly pathogenic variants, and the ability to quickly gain resistance to neuraminidase inhibitors. Therefore, developing and testing H7N9 vaccines constitutes a priority for pandemic preparedness.

9.
J Infect Dis ; 216(10): 1219-1226, 2017 12 05.
Article in English | MEDLINE | ID: mdl-28968871

ABSTRACT

Background: Seasonal influenza vaccines are transitioning to quadrivalent formulations including the hemagglutinins of influenza A subtypes H1N1 and H3N2 and B lineages Yamagata and Victoria. Methods: A new quadrivalent recombinant influenza vaccine (RIV4) was compared directly with a standard-dose, egg-grown, quadrivalent-inactivated influenza vaccine (IIV4) for immunogenicity and safety in adults 18-49 years of age. The coprimary endpoints for noninferiority were hemagglutination inhibition seroconversion rates and postvaccination geometric mean titer ratios for each antigen using US regulatory criteria. Reactogenicity solicited for 7 days, other safety events collected for 28 days, and serious or medically attended adverse events collected for 6 months after vaccination comprised the safety evaluation. Results: The immunogenicity of RIV4 was comparable to that of IIV4; the coprimary noninferiority criteria were met for 3 antigens, and the antibody responses to the fourth antigen, influenza B/Brisbane/60/2008, were low in each group, making comparisons uninterpretable. Systemic and injection site reactions were mild, transient, and similar in each group, whereas none of the spontaneously reported adverse events, serious or nonserious, were considered related to study vaccine. Conclusions: This first head-to-head comparison of recombinant versus inactivated quadrivalent influenza vaccines in 18-49 year old adults showed comparable immunogenicity, safety, and tolerability for both vaccines.


Subject(s)
Immunogenicity, Vaccine/immunology , Influenza A virus/immunology , Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Adolescent , Adult , Antibody Formation/immunology , Female , Healthy Volunteers , Humans , Influenza Vaccines/administration & dosage , Influenza, Human/epidemiology , Male , Middle Aged , Vaccines, Inactivated/administration & dosage , Vaccines, Synthetic/administration & dosage , Young Adult
10.
N Engl J Med ; 376(25): 2427-2436, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28636855

ABSTRACT

BACKGROUND: Improved influenza vaccines are needed to control seasonal epidemics. This trial compared the protective efficacy in older adults of a quadrivalent, recombinant influenza vaccine (RIV4) with a standard-dose, egg-grown, quadrivalent, inactivated influenza vaccine (IIV4) during the A/H3N2-predominant 2014-2015 influenza season, when antigenic mismatch between circulating and vaccine influenza strains resulted in the reduced effectiveness of many licensed vaccines. METHODS: We conducted a randomized, double-blind, multicenter trial of RIV4 (45 µg of recombinant hemagglutinin [HA] per strain, 180 µg of protein per dose) versus standard-dose IIV4 (15 µg of HA per strain, 60 µg of protein per dose) to compare the relative vaccine efficacy against reverse-transcriptase polymerase-chain-reaction (RT-PCR)-confirmed, protocol-defined, influenza-like illness caused by any influenza strain starting 14 days or more after vaccination in adults who were 50 years of age or older. The diagnosis of influenza infection was confirmed by means of RT-PCR assay and culture of nasopharyngeal swabs obtained from participants with symptoms of an influenza-like illness. The primary end point was RT-PCR-confirmed, protocol defined, influenza-like illness between 14 days or more after vaccination and the end of the influenza season. RESULTS: A total of 9003 participants were enrolled and underwent randomization; 8855 (98.4%) received a trial vaccine and underwent an efficacy follow-up (the modified intention-to-treat population), and 8604 (95.6%) completed the per-protocol follow-up (the modified per-protocol population). Among RIV4 recipients, the RT-PCR-confirmed influenza attack rate was 2.2% (96 cases among 4303 participants) in the modified per-protocol population and 2.2% (96 cases among 4427 participants) in the modified intention-to-treat population. Among IIV4 recipients, the attack rate was 3.2% (138 cases among 4301 participants) in the modified per-protocol population and 3.1% (138 cases among 4428 participants) in the modified intention-to-treat population. A total of 181 cases of influenza A/H3N2, 47 cases of influenza B, and 6 cases of nonsubtypeable influenza A were detected. The probability of influenza-like illness was 30% lower with RIV4 than with IIV4 (95% confidence interval, 10 to 47; P=0.006) and satisfied prespecified criteria for the primary noninferiority analysis and an exploratory superiority analysis of RIV4 over IIV4. The safety profiles of the vaccines were similar. CONCLUSIONS: RIV4 provided better protection than standard-dose IIV4 against confirmed influenza-like illness among older adults. (Funded by Protein Sciences; ClinicalTrials.gov number, NCT02285998 .).


Subject(s)
Influenza Vaccines/immunology , Influenza, Human/prevention & control , Aged , Aged, 80 and over , Double-Blind Method , Female , Humans , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Influenza Vaccines/adverse effects , Male , Middle Aged , Nasopharynx/virology , Proportional Hazards Models , Treatment Outcome , Vaccines, Inactivated/immunology , Vaccines, Synthetic/immunology
11.
PLoS One ; 12(4): e0175633, 2017.
Article in English | MEDLINE | ID: mdl-28423032

ABSTRACT

A putative novel rhabdovirus (SfRV) was previously identified in a Spodoptera frugiperda cell line (Sf9 cells [ATCC CRL-1711 lot 58078522]) by next generation sequencing and extensive bioinformatic analysis. We performed an extensive analysis of our Sf9 cell bank (ATCC CRL-1711 lot 5814 [Sf9L5814]) to determine whether this virus was already present in cells obtained from ATCC in 1987. Inverse PCR of DNA isolated from Sf9 L5814 cellular DNA revealed integration of SfRV sequences in the cellular genome. RT-PCR of total RNA showed a deletion of 320 nucleotides in the SfRV RNA that includes the transcriptional motifs for genes X and L. Concentrated cell culture supernatant was analyzed by sucrose density gradient centrifugation and revealed a single band at a density of 1.14 g/ml. This fraction was further analysed by electron microscopy and showed amorphous and particulate debris that did not resemble a rhabdovirus in morphology or size. SDS-PAGE analysis confirmed that the protein composition did not contain the typical five rhabdovirus structural proteins and LC-MS/MS analysis revealed primarily of exosomal marker proteins, the SfRV N protein, and truncated forms of SfRV N, P, and G proteins. The SfRV L gene fragment RNA sequence was recovered from the supernatant after ultracentrifugation of the 1.14 g/ml fraction treated with diethyl ether suggesting that the SfRV L gene fragment sequence is not associated with a diethyl ether resistant nucleocapsid. Interestingly, the 1.14 g/ml fraction was able to transfer baculovirus DNA into Sf9L5814 cells, consistent with the presence of functional exosomes. Our results demonstrate the absence of viral particles in ATCC CRL-1711 lot 5814 Sf9 cells in contrast to a previous study that suggested the presence of infectious rhabdoviral particles in Sf9 cells from a different lot. This study highlights how cell lines with different lineages may present different virosomes and therefore no general conclusions can be drawn across Sf9 cells from different laboratories.


Subject(s)
Genome, Viral , RNA, Viral/genetics , Rhabdoviridae/genetics , Sf9 Cells/virology , Virosomes/genetics , Animals , Baculoviridae/genetics , Baculoviridae/ultrastructure , Centrifugation, Density Gradient , DNA/genetics , DNA/isolation & purification , Electrophoresis, Polyacrylamide Gel , High-Throughput Nucleotide Sequencing , RNA, Viral/isolation & purification , Rhabdoviridae/ultrastructure , Spodoptera , Virion/genetics , Virion/ultrastructure , Virosomes/isolation & purification , Virosomes/ultrastructure
12.
mBio ; 8(2)2017 03 21.
Article in English | MEDLINE | ID: mdl-28325769

ABSTRACT

Antibody responses to influenza virus hemagglutinin provide protection against infection and are well studied. Less is known about the human antibody responses to the second surface glycoprotein, neuraminidase. Here, we assessed human antibody reactivity to a panel of N1, N2, and influenza B virus neuraminidases in different age groups, including children, adults, and the elderly. Using enzyme-linked immunosorbent assays (ELISA), we determined the breadth, magnitude, and isotype distribution of neuraminidase antibody responses to historic, current, and avian strains, as well as to recent isolates to which these individuals have not been exposed. It appears that antibody levels against N1 neuraminidases were lower than those against N2 or B neuraminidases. The anti-neuraminidase antibody levels increased with age and were, in general, highest against strains that circulated during the childhood of the tested individuals, providing evidence for "original antigenic sin." Titers measured by ELISA correlated well with titers measured by the neuraminidase inhibition assays. However, in the case of the 2009 pandemic H1N1 virus, we found evidence of interference from antibodies binding to the conserved stalk domain of the hemagglutinin. In conclusion, we found that antibodies against the neuraminidase differ in magnitude and breadth between subtypes and age groups in the human population. (This study has been registered at ClinicalTrials.gov under registration no. NCT00336453, NCT00539981, and NCT00395174.)IMPORTANCE Anti-neuraminidase antibodies can afford broad protection from influenza virus infection in animal models and humans. However, little is known about the breadth and magnitude of the anti-neuraminidase response in the human population. Here we assessed antibody levels of children, adults, and the elderly against a panel of N1, N2, and type B influenza virus neuraminidases. We demonstrated that antibody levels measured by ELISA correlate well with functional neuraminidase inhibition titers. This is an important finding since ELISA is a simpler method than functional assays and can be implemented in high-throughput settings to analyze large numbers of samples. Furthermore, we showed that low titers of broadly cross-reactive antibodies against neuraminidase are prevalent in humans. By the use of an appropriate vaccination strategy, these titers could potentially be boosted to levels that might provide broad protection from influenza virus infection.


Subject(s)
Antibodies, Viral/blood , Neuraminidase/immunology , Viral Proteins/immunology , Adolescent , Adult , Adult Children , Age Factors , Aged , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Humans , Infant , Middle Aged , Neuraminidase/analysis , Randomized Controlled Trials as Topic , Young Adult
14.
Hum Vaccin Immunother ; 13(6): 1-11, 2017 06 03.
Article in English | MEDLINE | ID: mdl-28301280

ABSTRACT

Timely vaccine supply is critical during influenza pandemics but is impeded by current virus-based manufacturing methods. The 2009 H1N1/2009pdm 'swine flu' pandemic reinforced the need for innovation in pandemic vaccine design. We report on insights gained during rapid development of a pandemic vaccine based on recombinant haemagglutinin (rHA) formulated with Advax™ delta inulin adjuvant (Panblok-H1/Advax). Panblok-H1/Advax was designed and manufactured within 1 month of the pandemic declaration by WHO and successfully entered human clinical testing in under 3 months from first isolation and sequencing of the novel pandemic virus, requiring several major challenges to be overcome. Panblok-H1/Advax successfully induced neutralising antibodies against the pandemic strain, but also induced cross-neutralising antibodies in a subset of subjects against an H1N1 strain (A/Puerto Rico/8/34) derived from the 1918 Spanish flu, highlighting the possibility to use Advax to induce more broadly cross-protective antibody responses. Interestingly, the rHA from H1N1/2009pdm exhibited variants in the receptor binding domain that had a major impact on receptor binding and hemagglutination ability. We used an in silico structural modeling approach to better understand the unusual behavior of the novel hemagglutinin, thereby demonstrating the power of computational modeling approaches for rapid characterization of new pandemic viruses. While challenges remain in ensuring ultrafast vaccine access for the entire population in response to future pandemics, the adjuvanted recombinant Panblok-H1/Advax vaccine proved its utility during a real-life pandemic situation.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Inulin/analogs & derivatives , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cross Reactions , Female , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Influenza Vaccines/isolation & purification , Inulin/administration & dosage , Male , Middle Aged , Models, Molecular , Protein Conformation , Technology, Pharmaceutical/methods , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/isolation & purification , Young Adult
15.
Methods Mol Biol ; 1403: 269-84, 2016.
Article in English | MEDLINE | ID: mdl-27076136

ABSTRACT

Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus.


Subject(s)
Inulin/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Viral Vaccines/immunology , Adjuvants, Immunologic , Animals , Humans , Severe Acute Respiratory Syndrome/immunology , Spike Glycoprotein, Coronavirus/immunology
16.
mBio ; 7(1): e01996-15, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26787832

ABSTRACT

UNLABELLED: Influenza remains a major global health burden. Seasonal vaccines offer protection but can be rendered less effective when the virus undergoes extensive antigenic drift. Antibodies that target the highly conserved hemagglutinin stalk can protect against drifted viruses, and vaccine constructs designed to induce such antibodies form the basis for a universal influenza virus vaccine approach. In this study, we analyzed baseline and postvaccination serum samples of children (6 to 59 months), adults (18 to 49 years), and elderly individuals (≥65 years) who participated in clinical trials with a recombinant hemagglutinin-based vaccine. We found that baseline IgG and IgA antibodies against the H1 stalk domain correlated with the ages of patients. Children generally had very low baseline titers and did not respond well to the vaccine in terms of making stalk-specific antibodies. Adults showed the highest induction of stalk-specific antibodies, but the elderly had the highest absolute antibody titers against the stalk. Importantly, the stalk antibodies measured by enzyme-linked immunosorbent assay (ELISA) showed neutralizing activity in neutralization assays and protected mice in a passive-transfer model in a stalk titer-dependent manner. Finally, we found similar patterns of stalk-specific antibodies directed against the H3 and influenza B virus hemagglutinins, albeit at lower levels than those measured against the H1 stalk. The relatively high levels of stalk-specific antibodies in the elderly patients may explain the previously reported low influenza virus infection rates in this age group. (This study has been registered at ClinicalTrials.gov under registration no. NCT00336453, NCT00539981, and NCT00395174.) IMPORTANCE: The present study provides evidence that titers of broadly neutralizing hemagglutinin stalk-reactive antibodies increase with age, possibly due to repeated exposure to divergent influenza viruses. These relatively high levels of antistalk titers may be responsible for lower circulation rates of influenza viruses in older individuals. Our findings suggest that the level of antistalk antibodies is a good surrogate marker for protection against influenza virus infection. In addition, the levels of antistalk antibodies might determine the breadth of protection against different drifted strains.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunoglobulin Isotypes/immunology , Orthomyxoviridae/immunology , Adult , Age Factors , Aged , Aged, 80 and over , Animals , Child, Preschool , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Humans , Immunization, Passive , Infant , Middle Aged , Neutralization Tests , Orthomyxoviridae Infections/prevention & control , Young Adult
17.
Vaccine ; 33(48): 6622-8, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26529070

ABSTRACT

BACKGROUND: The safety and tolerability of Flublok(®), a purified recombinant hemagglutinin seasonal influenza vaccine, was compared to AFLURIA(®) in a randomized, blinded clinical trial in adults ≥ 50 years of age with attention to hypersensitivity reactions. METHODS: This blinded, randomized trial of healthy adults ≥ 50 years of age compared safety of Flublok vs. AFLURIA with respect to pre-specified possible hypersensitivity: "rash," "urticaria," "swelling" and "non-dependent edema;" solicited reactogenicity and unsolicited adverse events. Subject-reported outcomes were collected for 30 days after vaccination. All adverse event terms were reviewed by physicians blinded to vaccine group, who added other terms possibly reflecting hypersensitivity. Case records of subjects with possible hypersensitivity were adjudicated by independent experts blinded to treatment assignment to identify likely hypersensitivity reactions. Non-inferiority of the incidence of hypersensitivity in the two vaccine groups was pre-defined as an absolute difference with an upper bound of 2-sided 95% confidence limits ≤ 0.015. RESULTS: A total of 2640 subjects were enrolled, evenly split in age cohorts of 50-64 and ≥ 65 years. Fifty-two subjects reported at least one term possibly representing hypersensitivity, with a slight imbalance of 31 on Flublok and 21 on AFLURIA. The adjudicators determined that six and four subjects on Flublok and AFLURIA, respectively, likely met clinical criteria for hypersensitivity, yielding a difference in incidence between the two vaccine groups of 0.15% (upper bound of 2-sided 95% CI=0.9%). Reactogenicity and overall adverse event profiles were similar across both vaccines. CONCLUSIONS: Flublok was non-inferior to AFLURIA in adults ≥ 50 years of age with respect to expert-adjudicated events of likely hypersensitivity during 30 days following vaccination (Sponsored by Protein Sciences Corporation; ClinicalTrials.gov number NCT01825200).


Subject(s)
Hypersensitivity/etiology , Aged , Aged, 80 and over , Antibodies, Viral/blood , Drug-Related Side Effects and Adverse Reactions , Female , Healthy Volunteers , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza Vaccines/adverse effects , Influenza, Human/prevention & control , Male , Middle Aged , Vaccination
18.
Ther Adv Vaccines ; 3(4): 97-108, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26478817

ABSTRACT

Flublok is the first recombinant hemagglutinin (HA) vaccine licensed by the US Food and Drugs Administration for the prevention of influenza in adults aged 18 and older. The HA proteins produced in insect cell culture using the baculovirus expression system technology are exact analogues of wild type circulating influenza virus HAs. The universal HA manufacturing process that has been successfully scaled to the 21,000L contributes to rapid delivery of a substantial number of doses. This review discusses the immunogenicity, efficacy and safety data from five pivotal clinical studies used to support licensure of trivalent Flublok for adults 18 years of age and older in the United States. The trial data demonstrate that the higher antigen content in Flublok results in improved immunogenicity. Data further suggest improved efficacy and a slightly lower local reactogenicity compared with standard inactivated influenza vaccine, despite the presence of more antigen (statistically significant). Flublok influenza vaccine can include HAs designed to mimic 'drift' in influenza viruses as the process of predicting antigenic drift advances and, at a minimum, could address late appearing influenza viruses. The implementation of the latter will require support from regulatory authorities.

19.
Vaccine ; 33(44): 6011-6, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26409814

ABSTRACT

This study was designed to improve the stability of liquid formulations of recombinant influenza hemagglutinin (rHA) and to understand the mechanism of early loss of potency for rHA. The potency of rHA derived from several influenza strains was determined using single radial immunodiffusion (SRID), and the structure of the rHA was characterized using SDS-PAGE and dynamic light scattering. rHA formed disulfide cross-linked multimers, and potency decreased during extended storage. To reduce disulfide-mediated cross-linking and early potency loss, rHA was formulated with sodium thioglycolate (STG) and citrate. Addition of 80 mM STG and 55 mM sodium citrate inhibited disulfide-mediated cross-linking without affecting protein function for each rHA tested. The shelf life of the rHA formulation with STG-citrate, based on potency as determined by SRID, was extended as much as 20-fold, compared to a control formulation without STG-citrate. STG-citrate did not have a significant effect on the immunogenicity of H1 A/California/7/2009 rHA in mice.


Subject(s)
Hemagglutinins/chemistry , Hemagglutinins/immunology , Influenza Vaccines/chemistry , Thioglycolates/chemistry , Vaccine Potency , Animals , Antibodies, Viral/blood , Dynamic Light Scattering , Electrophoresis, Polyacrylamide Gel , Hemagglutinins/genetics , Immunodiffusion , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Mice, Inbred BALB C , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL