Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38853926

ABSTRACT

All eukaryotes share a common ancestor from roughly 1.5 - 1.8 billion years ago, a single-celled, swimming microbe known as LECA, the Last Eukaryotic Common Ancestor. Nearly half of the genes in modern eukaryotes were present in LECA, and many current genetic diseases and traits stem from these ancient molecular systems. To better understand these systems, we compared genes across modern organisms and identified a core set of 10,092 shared protein-coding gene families likely present in LECA, a quarter of which are uncharacterized. We then integrated >26,000 mass spectrometry proteomics analyses from 31 species to infer how these proteins interact in higher-order complexes. The resulting interactome describes the biochemical organization of LECA, revealing both known and new assemblies. We analyzed these ancient protein interactions to find new human gene-disease relationships for bone density and congenital birth defects, demonstrating the value of ancestral protein interactions for guiding functional genetics today.

2.
Dev Cell ; 57(9): 1119-1131.e5, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35476939

ABSTRACT

The design of an animal's body plan is encoded in the genome, and the execution of this program is a mechanical progression involving coordinated movement of proteins, cells, and whole tissues. Thus, a challenge to understanding morphogenesis is connecting events that occur across various length scales. Here, we describe how a poorly characterized adhesion effector, Arvcf catenin, controls Xenopus head-to-tail axis extension. We find that Arvcf is required for axis extension within the intact organism but not within isolated tissues. We show that the organism-scale phenotype results from a defect in tissue-scale force production. Finally, we determine that the force defect results from the dampening of the pulsatile recruitment of cell adhesion and cytoskeletal proteins to membranes. These results provide a comprehensive understanding of Arvcf function during axis extension and produce an insight into how a cellular-scale defect in adhesion results in an organism-scale failure of development.


Subject(s)
Armadillo Domain Proteins , Catenins , Animals , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Cadherins/metabolism , Cell Adhesion Molecules/metabolism , Morphogenesis , Phosphoproteins/metabolism , Xenopus laevis/metabolism
3.
J Cell Sci ; 134(14)2021 07 15.
Article in English | MEDLINE | ID: mdl-34060614

ABSTRACT

The dynamic control of the actin cytoskeleton is a key aspect of essentially all animal cell movements. Experiments in single migrating cells and in vitro systems have provided an exceptionally deep understanding of actin dynamics. However, we still know relatively little of how these systems are tuned in cell-type-specific ways, for example in the context of collective cell movements that sculpt the early embryo. Here, we provide an analysis of the actin-severing and depolymerization machinery during vertebrate gastrulation, with a focus on Twinfilin1 (Twf1) in Xenopus. We find that Twf1 is essential for convergent extension, and loss of Twf1 results in a disruption of lamellipodial dynamics and polarity. Moreover, Twf1 loss results in a failure to assemble polarized cytoplasmic actin cables, which are essential for convergent extension. These data provide an in vivo complement to our more-extensive understanding of Twf1 action in vitro and provide new links between the core machinery of actin regulation and the specialized cell behaviors of embryonic morphogenesis.


Subject(s)
Actins , Gastrulation , Actin Cytoskeleton , Actins/genetics , Animals , Pseudopodia , Xenopus laevis
4.
Elife ; 92020 12 02.
Article in English | MEDLINE | ID: mdl-33263282

ABSTRACT

Ciliary motility is driven by axonemal dyneins that are assembled in the cytoplasm before deployment to cilia. Motile ciliopathy can result from defects in the dyneins themselves or from defects in factors required for their cytoplasmic pre-assembly. Recent work demonstrates that axonemal dyneins, their specific assembly factors, and broadly-acting chaperones are concentrated in liquid-like organelles in the cytoplasm called DynAPs (Dynein Axonemal Particles). Here, we use in vivo imaging in Xenopus to show that inner dynein arm (IDA) and outer dynein arm (ODA) subunits are partitioned into non-overlapping sub-regions within DynAPs. Using affinity- purification mass-spectrometry of in vivo interaction partners, we also identify novel partners for inner and outer dynein arms. Among these, we identify C16orf71/Daap1 as a novel axonemal dynein regulator. Daap1 interacts with ODA subunits, localizes specifically to the cytoplasm, is enriched in DynAPs, and is required for the deployment of ODAs to axonemes. Our work reveals a new complexity in the structure and function of a cell-type specific liquid-like organelle that is directly relevant to human genetic disease.


Subject(s)
Axonemal Dyneins/metabolism , Organelles/metabolism , Animals , Cilia/metabolism , Cytoplasm/metabolism , Immunoprecipitation , Mass Spectrometry , Tandem Affinity Purification , Xenopus laevis/embryology
5.
Dev Biol ; 467(1-2): 108-117, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32898505

ABSTRACT

Cell-type specific RNA-associated proteins are essential for development and homeostasis in animals. Despite a massive recent effort to systematically identify RNA-associated proteins, we currently have few comprehensive rosters of cell-type specific RNA-associated proteins in vertebrate tissues. Here, we demonstrate the feasibility of determining the RNA-associated proteome of a defined vertebrate embryonic tissue using DIF-FRAC, a systematic and universal (i.e., label-free) method. Application of DIF-FRAC to cultured tissue explants of Xenopus mucociliary epithelium identified dozens of known RNA-associated proteins as expected, but also several novel RNA-associated proteins, including proteins related to assembly of the mitotic spindle and regulation of ciliary beating. In particular, we show that the inner dynein arm tether Cfap44 is an RNA-associated protein that localizes not only to axonemes, but also to liquid-like organelles in the cytoplasm called DynAPs. This result led us to discover that DynAPs are generally enriched for RNA. Together, these data provide a useful resource for a deeper understanding of mucociliary epithelia and demonstrate that DIF-FRAC will be broadly applicable for systematic identification of RNA-associated proteins from embryonic tissues.


Subject(s)
Cilia/metabolism , Embryo, Nonmammalian/metabolism , RNA-Binding Proteins/metabolism , Xenopus Proteins/metabolism , Animals , Epithelium/embryology , Tissue Culture Techniques , Xenopus
6.
Cell ; 181(2): 460-474.e14, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32191846

ABSTRACT

Plants are foundational for global ecological and economic systems, but most plant proteins remain uncharacterized. Protein interaction networks often suggest protein functions and open new avenues to characterize genes and proteins. We therefore systematically determined protein complexes from 13 plant species of scientific and agricultural importance, greatly expanding the known repertoire of stable protein complexes in plants. By using co-fractionation mass spectrometry, we recovered known complexes, confirmed complexes predicted to occur in plants, and identified previously unknown interactions conserved over 1.1 billion years of green plant evolution. Several novel complexes are involved in vernalization and pathogen defense, traits critical for agriculture. We also observed plant analogs of animal complexes with distinct molecular assemblies, including a megadalton-scale tRNA multi-synthetase complex. The resulting map offers a cross-species view of conserved, stable protein assemblies shared across plant cells and provides a mechanistic, biochemical framework for interpreting plant genetics and mutant phenotypes.


Subject(s)
Plant Proteins/genetics , Plant Proteins/metabolism , Protein Interaction Maps/physiology , Mass Spectrometry/methods , Plants/genetics , Plants/metabolism , Protein Interaction Mapping/methods , Proteomics/methods
7.
J Am Chem Soc ; 137(1): 390-8, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25478817

ABSTRACT

Iron-sulfur (Fe-S) clusters are protein cofactors that are constructed and delivered to target proteins by elaborate biosynthetic machinery. Mechanistic insights into these processes have been limited by the lack of sensitive probes for tracking Fe-S cluster synthesis and transfer reactions. Here we present fusion protein- and intein-based fluorescent labeling strategies that can probe Fe-S cluster binding. The fluorescence is sensitive to different cluster types ([2Fe-2S] and [4Fe-4S] clusters), ligand environments ([2Fe-2S] clusters on Rieske, ferredoxin (Fdx), and glutaredoxin), and cluster oxidation states. The power of this approach is highlighted with an extreme example in which the kinetics of Fe-S cluster transfer reactions are monitored between two Fdx molecules that have identical Fe-S spectroscopic properties. This exchange reaction between labeled and unlabeled Fdx is catalyzed by dithiothreitol (DTT), a result that was confirmed by mass spectrometry. DTT likely functions in a ligand substitution reaction that generates a [2Fe-2S]-DTT species, which can transfer the cluster to either labeled or unlabeled Fdx. The ability to monitor this challenging cluster exchange reaction indicates that real-time Fe-S cluster incorporation can be tracked for a specific labeled protein in multicomponent assays that include several unlabeled Fe-S binding proteins or other chromophores. Such advanced kinetic experiments are required to untangle the intricate networks of transfer pathways and the factors affecting flux through branch points. High sensitivity and suitability with high-throughput methodology are additional benefits of this approach. We anticipate that this cluster detection methodology will transform the study of Fe-S cluster pathways and potentially other metal cofactor biosynthetic pathways.


Subject(s)
Biosynthetic Pathways , Fluorescent Dyes/analysis , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Catalysis , Dithiothreitol/chemistry , Dithiothreitol/metabolism , Fluorescence , Fluorescent Dyes/chemistry , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...