Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Exp Biol ; 225(9)2022 05 01.
Article in English | MEDLINE | ID: mdl-35363265

ABSTRACT

The present study examined whether high-fat diet (HFD) consumption for 20 weeks had a temperature-specific effect on the contractile performance and regional thermal sensitivity of isolated mouse soleus and diaphragm muscle. Four-week-old female CD-1 mice were randomly selected to consume either a standard laboratory diet or a standard laboratory diet in conjunction with a HFD for 20 weeks. Peripheral soleus and core diaphragm were isolated from each animal and maximal isometric force and work loop power were assessed at 20, 28, 35 and 40°C. Increasing temperature to 35°C resulted in greater isometric stress, lower activation and relaxation time, and higher work loop power in both muscles. A further increase in temperature to 40°C did not affect isometric force but increased work loop power output of the soleus. Conversely, isometric force of the diaphragm was reduced and work loop power maintained when temperature was increased to 40°C. HFD consumption resulted in greater isometric force and absolute work loop power of the soleus and reduced isometric stress of the diaphragm, effects that were less apparent at lower temperatures. When the relationship between temperature and each measure of contractile function was examined by linear regression, there was no difference in slope between the control or HFD groups for either the soleus or diaphragm. These results indicate that whilst contractile function initially increases with temperature, the temperature to elicit maximal performance is muscle and contractile mode specific. Furthermore, HFD effects on contractile function are temperature specific, but HFD does not influence the relationship between temperature and performance.


Subject(s)
Diet, High-Fat , Muscle Contraction , Animals , Diaphragm/physiology , Female , Isometric Contraction , Mice , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Temperature
2.
Am J Physiol Regul Integr Comp Physiol ; 319(3): R296-R314, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32697655

ABSTRACT

The present study aimed to simultaneously examine the age-related, muscle-specific, sex-specific, and contractile mode-specific changes in isolated mouse skeletal muscle function and morphology across multiple ages. Measurements of mammalian muscle morphology, isometric force and stress (force/cross-sectional area), absolute and normalized (power/muscle mass) work-loop power across a range of contractile velocities, fatigue resistance, and myosin heavy chain (MHC) isoform concentration were measured in 232 isolated mouse (CD-1) soleus, extensor digitorum longus (EDL), and diaphragm from male and female animals aged 3, 10, 30, 52, and 78 wk. Aging resulted in increased body mass and increased soleus and EDL muscle mass, with atrophy only present for female EDL by 78 wk despite no change in MHC isoform concentration. Absolute force and power output increased up to 52 wk and to a higher level for males. A 23-36% loss of isometric stress exceeded the 14-27% loss of power normalized to muscle mass between 10 wk and 52 wk, although the loss of normalized power between 52 and 78 wk continued without further changes in stress (P > 0.23). Males had lower power normalized to muscle mass than females by 78 wk, with the greatest decline observed for male soleus. Aging did not cause a shift toward slower contractile characteristics, with reduced fatigue resistance observed in male EDL and female diaphragm. Our findings show that the loss of muscle quality precedes the loss of absolute performance as CD-1 mice age, with the greatest effect seen in male soleus, and in most instances without muscle atrophy or an alteration in MHC isoforms.


Subject(s)
Aging/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Muscular Atrophy/physiopathology , Animals , Diaphragm/physiopathology , Mice , Muscle Fatigue/physiology , Muscular Diseases/physiopathology
3.
Nutrients ; 11(3)2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30818814

ABSTRACT

Ageing and obesity independently have been shown to significantly impair isolated muscle contractile properties, though their synergistic effects are poorly understood. We uniquely examined the effects of 9 weeks of a high-fat diet (HFD) on isometric force, work loop power output (PO) across a range of contractile velocities, and fatigability of 79-week-old soleus, extensor digitorum longus (EDL) and diaphragm compared with age-matched lean controls. The dietary intervention resulted in a significant increase in body mass and gonadal fat pad mass compared to the control group. Despite increased muscle mass for HFD soleus and EDL, absolute isometric force, isometric stress (force/CSA), PO normalised to muscle mass and fatigability was unchanged, although absolute PO was significantly greater. Obesity did not cause an alteration in the contractile velocity that elicited maximal PO. In the obese group, normalised diaphragm PO was significantly reduced, with a tendency for reduced isometric stress and fatigability was unchanged. HFD soleus isolated from larger animals produced lower maximal PO which may relate to impaired balance in older, larger adults. The increase in absolute PO is smaller than the magnitude of weight gain, meaning in vivo locomotor function is likely to be impaired in old obese adults, with an association between greater body mass and poorer normalised power output for the soleus. An obesity-induced reduction in diaphragm contractility will likely impair in vivo respiratory function and consequently contribute further to the negative cycle of obesity.


Subject(s)
Diet, High-Fat/adverse effects , Muscle Contraction/drug effects , Muscle, Skeletal/physiology , Obesity/chemically induced , Animal Feed/analysis , Animals , Female , Mice , Muscle Contraction/physiology
4.
Eur J Appl Physiol ; 119(1): 213-226, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30357516

ABSTRACT

PURPOSE: Recent evidence has demonstrated an obesity-induced, skeletal muscle-specific reduction in contractile performance. The extent and magnitude of these changes in relation to total dose of high-fat diet consumption remains unclear. This study aimed to examine the dose-response relationship between a high-fat diet and isolated skeletal muscle contractility. METHODS: 120 female CD1 mice were randomly assigned to either control group or groups receiving 2, 4, 8 or 12 weeks of a high-calorie diet (N = 24). At 20 weeks, soleus, EDL or diaphragm muscle was isolated (n = 8 in each case) and isometric force, work loop power output and fatigue resistance were measured. RESULTS: When analysed with respect to feeding duration, there was no effect of diet on the measured parameters prior to 8 weeks of feeding. Compared to controls, 8-week feeding caused a reduction in normalised power of the soleus, and 8- and 12-week feeding caused reduced normalised isometric force, power and fatigue resistance of the EDL. Diaphragm from the 12-week group produced lower normalised power, whereas 8- and 12-week groups produced significantly lower normalised isometric force. Correlation statistics indicated that body fat accumulation and decline in contractility will be specific to the individual and independent of the feeding duration. CONCLUSION: The data indicate that a high-fat diet causes a decline in muscle quality with specific contractile parameters being affected in each muscle. We also uniquely demonstrate that the amount of fat gain, irrespective of feeding duration, may be the main factor in reducing contractile performance.


Subject(s)
Diaphragm/physiopathology , Diet, High-Fat/adverse effects , Muscle Contraction , Animals , Diaphragm/metabolism , Female , Lipid Metabolism , Mice
5.
J Exp Biol ; 221(Pt 21)2018 11 05.
Article in English | MEDLINE | ID: mdl-30224369

ABSTRACT

This study aimed to examine the effects of exercise-induced increases in skeletal muscle contractile performance on isolated skeletal muscle caffeine sensitivity in mice. CD1 mice (n=28; 30 weeks old) either served as controls or underwent 8 weeks of voluntary wheel running. Following the treatment intervention, whole soleus (SOL) or a section of the costal diaphragm (DIA) was isolated from each mouse and tested to determine the effect of 70 µmol l-1 caffeine on work loop power output. Although caffeine elicited a significant increase in power of both the SOL and the DIA relative to levels in a non-caffeine-treated control, the effect was not different between the experimental groups, despite the muscles of the trained group producing significantly greater muscle power. There was no significant relationship between training volume or baseline work loop power and the caffeine response. These results indicate that an exercise-induced increase in muscle performance did not influence the performance-enhancing effects of caffeine.


Subject(s)
Caffeine/pharmacology , Central Nervous System Stimulants/pharmacology , Diaphragm/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Physical Conditioning, Animal/physiology , Animals , Diaphragm/drug effects , Exercise/physiology , Female , Humans , Mice , Models, Animal , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Physical Exertion/physiology
6.
J Gerontol A Biol Sci Med Sci ; 73(5): 579-587, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29236945

ABSTRACT

There is currently a limited amount of literature investigating the age-related changes in eccentric muscle function in vitro. The present study uniquely uses the work loop (WL) technique, to better replicate in vivo muscle function, in the assessment of the age- and muscle-specific changes in acute and sustained concentric and eccentric power and recovery. Whole soleus or extensor digitorum longus (EDL) muscles were isolated from 10-week and 78-week-old mice and acute and sustained concentric and eccentric WL power assessed. Despite an age-related increase in body and muscle mass, peak absolute power for both muscles was unaffected by age. Peak concentric power normalized to muscle mass declined significantly for each muscle, while peak normalized eccentric power declined only for soleus. Fatigue resistance and recovery for the soleus did not differ between age or contraction type. Older EDL was less resistant to concentric fatigue, but was better able to withstand sustained eccentric activity than young EDL. We have shown that age-related changes in muscle quality are more limited for eccentric function than concentric function. A greater bodily inertia is likely to further reduce in vivo locomotor performance in older animals.


Subject(s)
Aging/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Sarcopenia/physiopathology , Animals , Female , In Vitro Techniques , Mice , Muscle Fatigue/physiology
7.
J Exp Biol ; 220(Pt 20): 3733-3741, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28819051

ABSTRACT

Decreased skeletal muscle performance with increasing age is strongly associated with reduced mobility and quality of life. Increased physical activity is a widely prescribed method of reducing the detrimental effects of ageing on skeletal muscle contractility. The present study used isometric and work loop testing protocols to uniquely investigate the effects of 8 weeks of voluntary wheel running on the contractile performance of isolated dynapenic soleus and diaphragm muscles of 38-week-old CD1 mice. When compared with untrained controls, voluntary wheel running induced significant improvements in maximal isometric stress and work loop power, a reduced resistance to fatigue, but greater cumulative work during fatiguing work loop contractions in isolated muscle. These differences occurred without appreciable changes in lactate dehydrogenase, citrate synthase, sarco-endoplasmic reticulum ATPase or myosin heavy chain expression synonymous with this form of training in younger rodent models. Despite the given improvement in contractile performance, the average running distance significantly declined over the course of the training period, indicating that this form of training may not be sufficient to fully counteract the longer-term ageing-induced decline in skeletal muscle contractile performance. Although these results indicate that regular low-intensity physical activity may be beneficial in offsetting the age-related decline in skeletal muscle contractility, future work focusing on the maintenance of a healthy body mass with increasing age and its effects on myosin-actin cross-bridge kinetics and Ca2+ handling is needed to clarify the mechanisms causing the improved contractile performance in trained dynapenic skeletal muscle.


Subject(s)
Aging , Diaphragm/physiology , Motor Activity , Muscle Contraction , Muscle, Skeletal/physiology , Animals , Female , Mice
8.
J Appl Physiol (1985) ; 122(1): 170-181, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27856719

ABSTRACT

Obesity affects the major metabolic and cellular processes involved in skeletal muscle contractility. Surprisingly, the effect of obesity on isolated skeletal muscle performance remains unresolved. The present study is the first to examine the muscle-specific changes in contractility following dietary-induced obesity using an isolated muscle work-loop (WL) model that more closely represents in vivo muscle performance. Following 16-wk high-calorific feeding, soleus (SOL), extensor digitorum longus (EDL), and diaphragm (DIA) were isolated from female (CD-1) mice, and contractile performance was compared against a lean control group. Obese SOL produced greater isometric force; however, isometric stress (force per unit muscle area), absolute WL power, and normalized WL power (watts per kilogram muscle mass) were unaffected. Maximal isometric force and absolute WL power of the EDL were similar between groups. For both EDL and DIA, isometric stress and normalized WL power were reduced in the obese groups. Obesity caused a significant reduction in fatigue resistance in all cases. Our findings demonstrate a muscle-specific reduction in contractile performance and muscle quality that is likely related to in vivo mechanical role, fiber type, and metabolic profile, which may in part be related to changes in myosin heavy chain expression and AMP-activated protein kinase activity. These results infer that, beyond the additional requirement of moving a larger body mass, functional performance and quality of life may be further limited by poor muscle function in obese individuals. As such, a reduction in muscle performance may be a substantial contributor to the negative cycle of obesity. NEW & NOTEWORTHY: The effect of obesity on isolated muscle function is surprisingly underresearched. The present study is the first to examine the effects of obesity on isolated muscle performance using a method that more closely represents real-world muscle function. This work uniquely establishes a muscle-specific profile of mechanical changes in relation to underpinning mechanisms. These findings may be important to understanding the negative cycle of obesity and in designing interventions for improving weight status.


Subject(s)
Diaphragm/physiopathology , Muscle Contraction/physiology , Muscle, Skeletal/physiopathology , Obesity/physiopathology , AMP-Activated Protein Kinases/metabolism , Animals , Body Weight/physiology , Diaphragm/metabolism , Female , Metabolome/physiology , Mice , Muscle Fatigue/physiology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , Muscle Stretching Exercises/methods , Muscle, Skeletal/metabolism , Myosin Heavy Chains/metabolism , Obesity/metabolism , Quality of Life
9.
Am J Physiol Regul Integr Comp Physiol ; 307(6): R670-84, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24990861

ABSTRACT

Previous isolated muscle studies examining the effects of ageing on contractility have used isometric protocols, which have been shown to have poor relevance to dynamic muscle performance in vivo. The present study uniquely uses the work-loop technique for a more realistic estimation of in vivo muscle function to examine changes in mammalian skeletal muscle mechanical properties with age. Measurements of maximal isometric stress, activation and relaxation time, maximal power output, and sustained power output during repetitive activation and recovery are compared in locomotory extensor digitorum longus (EDL) and core diaphragm muscle isolated from 3-, 10-, 30-, and 50-wk-old female mice to examine the early onset of ageing. A progressive age-related reduction in maximal isometric stress that was of greater magnitude than the decrease in maximal power output occurred in both muscles. Maximal force and power developed earlier in diaphragm than EDL muscle but demonstrated a greater age-related decline. The present study indicates that ability to sustain skeletal muscle power output through repetitive contraction is age- and muscle-dependent, which may help rationalize previously reported equivocal results from examination of the effect of age on muscular endurance. The age-related decline in EDL muscle performance is prevalent without a significant reduction in muscle mass, and biochemical analysis of key marker enzymes suggests that although there is some evidence of a more oxidative fiber type, this is not the primary contributor to the early age-related reduction in muscle contractility.


Subject(s)
Aging , Diaphragm/physiopathology , Isometric Contraction , Locomotion , Muscle Strength , Muscle, Skeletal/physiology , Respiration , Sarcopenia/physiopathology , Age Factors , Animals , Body Weight , Diaphragm/metabolism , Female , Mice , Muscle Fatigue , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Recovery of Function , Sarcopenia/genetics , Sarcopenia/metabolism , Time Factors
10.
Can J Physiol Pharmacol ; 92(1): 42-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24383872

ABSTRACT

High concentrations of caffeine and taurine are key constituents of many ergogenic supplements ingested acutely to provide legal enhancements in athlete performance. Despite this, there is little evidence supporting the claims for the performance-enhancing effects of acute taurine supplementation. In-vitro models have demonstrated that a caffeine-induced muscle contracture can be further potentiated when combined with a high concentration of taurine. However, the high concentrations of caffeine used in previous research would be toxic for human consumption. Therefore, this study aimed to investigate whether a physiological dose of caffeine and taurine would directly potentiate skeletal muscle performance. Isolated mouse soleus muscle was used to examine the effects of physiological taurine (TAU), caffeine (CAF), and taurine-caffeine combined (TC) on (i) acute muscle power output; (ii) time to fatigue; and (iii) recovery from fatigue, compared with the untreated controls (CON). Treatment with TAU failed to elicit any significant difference in the measured parameters. Treatment with TC resulted in a significant increase in acute muscle power output and faster time to fatigue. The ergogenic benefit posed by TC was not different from the effects of caffeine alone, suggesting no acute ergogenic benefit of taurine.


Subject(s)
Caffeine/pharmacology , Muscle Fatigue/drug effects , Muscle, Skeletal/drug effects , Taurine/pharmacology , Animals , Female , In Vitro Techniques , Mice , Muscle Contraction , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Taurine/metabolism
11.
J Physiol Sci ; 63(2): 125-32, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23292763

ABSTRACT

The use of caffeine as an ergogenic aid to promote endurance has been widely studied, with human literature showing the greatest benefit during submaximal muscle activities. Recent evidence suggests that the acute treatment of skeletal muscle with physiological concentrations of caffeine (70 µM maximum) will directly potentiate force production. The aims of the present study are: firstly, to assess the effects of a physiological concentration (70 µM) of caffeine on endurance in maximally activated mouse soleus (relatively slow) muscle; and secondly, to examine whether endurance changes when muscle is activated submaximally during caffeine treatment. Maximally stimulated soleus muscle treated with 70 µM caffeine resulted in a significant (17.6 %) decrease in endurance. In contrast, at a submaximal stimulation frequency, caffeine treatment significantly prolonged endurance (by 19.2 %). Findings are activation-dependent such that, during high frequency stimulation, caffeine accelerates fatigue, whereas, during low frequency stimulation, caffeine delays fatigue.


Subject(s)
Caffeine/pharmacology , Isometric Contraction/drug effects , Muscle Strength/drug effects , Muscle, Skeletal/drug effects , Physical Endurance/drug effects , Animals , Electric Stimulation , Female , Mice , Muscle Fatigue/drug effects , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Recovery of Function , Time Factors
12.
J Appl Physiol (1985) ; 112(1): 64-71, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21979804

ABSTRACT

The ergogenic effects of caffeine in human exercise have been shown to improve endurance and anaerobic exercise performance. Previous work has demonstrated that 70 µM caffeine (physiological maximum) can directly increase mouse extensor digitorum longus (EDL) muscle power output (PO) in sprintlike activity by 3%. Our study used the work loop technique on isolated mouse muscles to investigate whether the direct effect of 70 µM caffeine on PO differed between 1) maximally and submaximally activated muscle; 2) relatively fast (EDL) and relatively slow (soleus) muscles; and 3) caffeine concentrations. Caffeine treatment of 70 µM resulted in significant improvements in PO in maximally and submaximally activated EDL and soleus (P < 0.03 in all cases). For EDL, the effects of caffeine were greatest when the lowest, submaximal stimulation frequency was used (P < 0.001). Caffeine treatments of 140, 70, and 50 µM resulted in significant improvements in acute PO for both maximally activated EDL (3%) and soleus (6%) (P < 0.023 in all cases); however, there was no significant difference in effect between these concentrations (P > 0.420 in all cases). Therefore, the ergogenic effects of caffeine on PO were higher in muscles with a slower fiber type (P < 0.001). Treatment with 35 µM caffeine failed to elicit any improvement in PO in either muscle (P > 0.72 in both cases). Caffeine concentrations below the physiological maximum can directly potentiate skeletal muscle PO. This caffeine-induced increase in force could provide similar benefit across a range of exercise intensities, with greater gains likely in activities powered by slower muscle fiber type.


Subject(s)
Caffeine/pharmacology , Muscle Contraction/physiology , Muscle Fibers, Fast-Twitch/physiology , Muscle Fibers, Slow-Twitch/physiology , Muscle, Skeletal/physiology , Animals , Caffeine/metabolism , Dose-Response Relationship, Drug , Female , In Vitro Techniques , Mice , Muscle Contraction/drug effects , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Slow-Twitch/drug effects , Muscle, Skeletal/drug effects
13.
Eur J Appl Physiol ; 95(1): 74-82, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15959797

ABSTRACT

Caffeine ingestion by human athletes has been found to improve endurance performance primarily acting via the central nervous system as an adenosine receptor antagonist. However, a few studies have implied that the resultant micromolar levels of caffeine in blood plasma (70 microM maximum for humans) may directly affect skeletal muscle causing enhanced force production. In the present study, the effects of 70 microM caffeine on force and power output in isolated mouse extensor digitorum longus muscle were investigated in vitro at 35 degrees C. Muscle preparations were subjected to cyclical sinusoidal length changes with electrical stimulation conditions optimised to produce maximal work. 70 microM caffeine caused a small but significant increase (2-3%) in peak force and net work produced during work loops (where net work represents the work input required to lengthen the muscle subtracted from the work produced during shortening). However, these micromolar caffeine levels did not affect the overall pattern of fatigue or the pattern of recovery from fatigue. Our results suggest that the plasma concentrations found when caffeine is used to enhance athletic performance in human athletes might directly enhance force and power during brief but not prolonged activities. These findings potentially confirm previous in vivo studies, using humans, which implied caffeine ingestion may cause acute improvements in muscle force and power output but would not enhance endurance.


Subject(s)
Caffeine/administration & dosage , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle Fatigue/drug effects , Muscle Fatigue/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Animals , Electric Stimulation , Energy Transfer/drug effects , Energy Transfer/physiology , Female , In Vitro Techniques , Mice , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...