Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 769: 144804, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33485200

ABSTRACT

Anthelmintics are antiparasitic drugs used to control helminthic parasites such as nematodes and trematodes in animals, particularly those exposed through pasture-based production systems. Even though anthelmintics have been shown to be excreted into the environment in relatively high amounts as unmetabolized drug or transformation products (TPs), there is still only limited information available on their environmental occurrence, particularly in groundwater, which has resulted in them being considered as potential emerging contaminants of concern. A comprehensive study was carried out to investigate the occurrence of 40 anthelmintic residues (including 13 TPs) in groundwaters (and associated surface waters) throughout the Republic of Ireland. The study focused on investigating the occurrence of these contaminants in karst and fractured bedrock aquifers, with a total of 106 sites (88 groundwaters and 18 surface waters) samples during spring 2017. Seventeen anthelmintic compounds consisting of eight parent drugs and nine TPs were detected at 22% of sites at concentrations up to 41 ng L-1. Albendazole and its TPs were most frequently detected residues, found at 8% of groundwater sites and 28% of surface water sites. Multivariate statistical analysis identified several source and pathway factors as being significantly related to the occurrence of anthelmintics in groundwater, however there was an evident localised effect which requires further investigation. An investigation of the temporal variations in occurrence over a 13 month period indicated a higher frequency and concentration of anthelmintics during February/March and again later during August/September 2018, which coincided with periods of increased usage and intensive meteorological events. This work presents the first detections of these contaminants in Irish groundwater and it contributes to broadening our understanding of anthelmintics in the environment. It also provides insight to seasonal trends in occurrence, which is critical for assessing potential future effects and implications of climate change.


Subject(s)
Anthelmintics , Groundwater , Veterinary Drugs , Water Pollutants, Chemical , Animals , Environmental Monitoring , Ireland , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 746: 141116, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32758987

ABSTRACT

Intensification of the food production system to meet increased global demand for food has led to veterinary pharmaceuticals becoming a critical component in animal husbandry. Anticoccidials are a group of veterinary products used to control coccidiosis in food-producing animals, with primary prophylactic use in poultry production. Excretion in manure and subsequent land-spreading provides a potential pathway to groundwater. Information on the fate and occurrence of these compounds in groundwater is scant, therefore these substances are potential emerging organic contaminants of concern. A study was carried out to investigate the occurrence of anticoccidial compounds in groundwater throughout the Republic of Ireland. Twenty-six anticoccidials (6 ionophores and 20 synthetic anticoccidials) were analysed at 109 sites (63 boreholes and 46 springs) during November and December 2018. Sites were categorised and selected based on the following source and pathway factors: (a) the presence/absence of poultry activity (b) predominant aquifer category and (c) predominant groundwater vulnerability, within the zone of contribution (ZOC) for each site. Seven anticoccidials, including four ionophores (lasalocid, monensin, narasin and salinomycin) and three synthetic anticoccidials (amprolium, diclazuril and nicarbazin), were detected at 24% of sites at concentrations ranging from 1 to 386 ng L-1. Monensin and amprolium were the two most frequently detected compounds, detected at 15% and 7% of sites, respectively. Multivariate statistical analysis has shown that source factors are the most significant drivers of the occurrence of anticoccidials, with no definitive relationships between occurrence and pathway factors. The study found that the detection of anticoccidial compounds is 6.5 times more likely when poultry activity is present within the ZOC of a sampling point, compared to the absence of poultry activity. This work presents the first detections of these contaminants in Irish groundwater and it contributes to broadening our understanding of the environmental occurrence and fate of anticoccidial veterinary products.


Subject(s)
Coccidiostats , Groundwater , Poultry Diseases , Veterinary Drugs , Animals , Chickens , Ireland
3.
Water Res ; 124: 85-96, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28750288

ABSTRACT

Excessive nitrate (NO3-) concentration in groundwater raises health and environmental issues that must be addressed by all European Union (EU) member states under the Nitrates Directive and the Water Framework Directive. The identification of NO3- sources is critical to efficiently control or reverse NO3- contamination that affects many aquifers. In that respect, the use of stable isotope ratios 15N/14N and 18O/16O in NO3- (expressed as δ15N-NO3- and δ18O-NO3-, respectively) has long shown its value. However, limitations exist in complex environments where multiple nitrogen (N) sources coexist. This two-year study explores a method for improved NO3- source investigation in a shallow unconfined aquifer with mixed N inputs and a long established NO3- problem. In this tillage-dominated area of free-draining soil and subsoil, suspected NO3- sources were diffuse applications of artificial fertiliser and organic point sources (septic tanks and farmyards). Bearing in mind that artificial diffuse sources were ubiquitous, groundwater samples were first classified according to a combination of two indicators relevant of point source contamination: presence/absence of organic point sources (i.e. septic tank and/or farmyard) near sampling wells and exceedance/non-exceedance of a contamination threshold value for sodium (Na+) in groundwater. This classification identified three contamination groups: agricultural diffuse source but no point source (D+P-), agricultural diffuse and point source (D+P+) and agricultural diffuse but point source occurrence ambiguous (D+P±). Thereafter δ15N-NO3- and δ18O-NO3- data were superimposed on the classification. As δ15N-NO3- was plotted against δ18O-NO3-, comparisons were made between the different contamination groups. Overall, both δ variables were significantly and positively correlated (p < 0.0001, rs = 0.599, slope of 0.5), which was indicative of denitrification. An inspection of the contamination groups revealed that denitrification did not occur in the absence of point source contamination (group D+P-). In fact, strong significant denitrification lines occurred only in the D+P+ and D+P± groups (p < 0.0001, rs > 0.6, 0.53 ≤ slope ≤ 0.76), i.e. where point source contamination was characterised or suspected. These lines originated from the 2-6‰ range for δ15N-NO3-, which suggests that i) NO3- contamination was dominated by an agricultural diffuse N source (most likely the large organic matter pool that has incorporated 15N-depleted nitrogen from artificial fertiliser in agricultural soils and whose nitrification is stimulated by ploughing and fertilisation) rather than point sources and ii) denitrification was possibly favoured by high dissolved organic content (DOC) from point sources. Combining contamination indicators and a large stable isotope dataset collected over a large study area could therefore improve our understanding of the NO3- contamination processes in groundwater for better land use management. We hypothesise that in future research, additional contamination indicators (e.g. pharmaceutical molecules) could also be combined to disentangle NO3- contamination from animal and human wastes.


Subject(s)
Environmental Monitoring , Nitrogen/chemistry , Water Pollutants, Chemical/analysis , Groundwater , Nitrates , Nitrogen Isotopes
4.
Sci Total Environ ; 586: 372-389, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28228237

ABSTRACT

At the catchment scale, a complex mosaic of environmental, hydrogeological and physicochemical characteristics combine to regulate the distribution of groundwater and stream nitrate (NO3-). The efficiency of NO3- removal (via denitrification) versus the ratio of accumulated reaction products, dinitrogen (excess N2) & nitrous oxide (N2O), remains poorly understood. Groundwater was investigated in two well drained agricultural catchments (10km2) in Ireland with contrasting subsurface lithologies (sandstone vs. slate) and landuse. Denitrification capacity was assessed by measuring concentration and distribution patterns of nitrogen (N) species, aquifer hydrogeochemistry, stable isotope signatures and aquifer hydraulic properties. A hierarchy of scale whereby physical factors including agronomy, water table elevation and permeability determined the hydrogeochemical signature of the aquifers was observed. This hydrogeochemical signature acted as the dominant control on denitrification reaction progress. High permeability, aerobic conditions and a lack of bacterial energy sources in the slate catchment resulted in low denitrification reaction progress (0-32%), high NO3- and comparatively low N2O emission factors (EF5g1). In the sandstone catchment denitrification progress ranged from 4 to 94% and was highly dependent on permeability, water table elevation, dissolved oxygen concentration solid phase bacterial energy sources. Denitrification of NO3- to N2 occurred in anaerobic conditions, while at intermediate dissolved oxygen; N2O was the dominant reaction product. EF5g1 (mean: 0.0018) in the denitrifying sandstone catchment was 32% less than the IPCC default. The denitrification observations across catchments were supported by stable isotope signatures. Stream NO3- occurrence was 32% lower in the sandstone catchment even though N loading was substantially higher than the slate catchment.

5.
Sci Total Environ ; 476-477: 460-76, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24486501

ABSTRACT

Excess nitrogen in soil, aquatic and atmospheric environments is an escalating global problem. Eutrophication is the principal threat to surface water quality in the Republic of Ireland. European Union Water Framework Directive (2000/60/EC) water quality status assessments found that 16% of Irish groundwater bodies were 'at risk' of poor status due to the potential deterioration of associated estuarine and coastal water quality by nitrate from groundwater. This paper presents a methodology for evaluating pressure and pathway parameters affecting the spatial distribution of groundwater nitrate, investigated at a regional scale using existing national spatial datasets. The potential for nitrate transfer to groundwater was rated based on the introduced concepts of Pressure Loading and Pathway Connectivity Rating, each based on a combination of selected pressure and pathway parameters respectively. In the region studied, the South Eastern River Basin District of Ireland, this methodology identified that pathway parameters were more important than pressure parameters in understanding the spatial distribution of groundwater nitrate. Statistical analyses supported these findings and further demonstrated that the proportion of poorly drained soils, arable land, karstic flow regimes, regionally important bedrock aquifers and high vulnerability groundwater within the zones of contribution of the monitoring points are statistically significantly related to groundwater nitrate concentrations. Soil type was found to be the most important parameter. Analysis of variance showed that a number of the pressure and pathway parameters are interrelated. The parameters identified by the presented methodology may provide useful insights into the best way to manage and mitigate the influence of nitrate contamination of groundwater in this region. It is suggested that the identification of critical source areas based on the identified parameters would be an appropriate management tool, enabling planning and enforcement resources to be focussed on areas which will yield most benefit.


Subject(s)
Environmental Monitoring , Groundwater/chemistry , Nitrates/analysis , Water Pollutants, Chemical/analysis , Agriculture , Hydrology , Ireland , Spatial Analysis
6.
Chemosphere ; 103: 234-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24374183

ABSTRACT

Over-winter green cover crops have been reported to increase dissolved organic carbon (DOC) concentrations in groundwater, which can be used as an energy source for denitrifiers. This study investigates the impact of a mustard catch crop on in situ denitrification and nitrous oxide (N2O) emissions from an aquifer overlain by arable land. Denitrification rates and N2O-N/(N2O-N+N2-N) mole fractions were measured in situ with a push-pull method in shallow groundwater under a spring barley system in experimental plots with and without a mustard cover crop. The results suggest that a mustard cover crop could substantially enhance reduction of groundwater nitrate NO3--N via denitrification without significantly increasing N2O emissions. Mean total denitrification (TDN) rates below mustard cover crop and no cover crop were 7.61 and 0.002 µg kg(-1) d(-1), respectively. Estimated N2O-N/(N2O-N+N2-N) ratios, being 0.001 and 1.0 below mustard cover crop and no cover crop respectively, indicate that denitrification below mustard cover crop reduces N2O to N2, unlike the plot with no cover crop. The observed enhanced denitrification under the mustard cover crop may result from the higher groundwater DOC under mustard cover crop (1.53 mg L(-1)) than no cover crop (0.90 mg L(-1)) being added by the root exudates and root masses of mustard. This study gives insights into the missing piece in agricultural nitrogen (N) balance and groundwater derived N2O emissions under arable land and thus helps minimise the uncertainty in agricultural N and N2O-N balances.


Subject(s)
Crops, Agricultural/metabolism , Denitrification , Groundwater/analysis , Hordeum/growth & development , Mustard Plant/metabolism , Nitrogen/metabolism
7.
Water Res ; 46(12): 3723-36, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22578428

ABSTRACT

(15)N and (18)O isotope abundance analyses in nitrate (NO(3)(-)) (expressed as δ(15)N-NO(3)(-) and δ(18)O-NO(3)(-) values respectively) have often been used in research to help identify NO(3)(-) sources in rural groundwater. However, questions have been raised over the limitations as overlaps in δ values may occur between N source types early in the leaching process. The aim of this study was to evaluate the utility of using stable isotopes for nitrate source tracking through the determination of δ(15)N-NO(3)(-) and δ(18)O-NO(3)(-) in the unsaturated zone from varying N source types (artificial fertiliser, dairy wastewater and cow slurry) and rates with contrasting isotopic compositions. Despite NO(3)(-) concentrations being often elevated, soil-water nitrate poorly mirrored the (15)N content of applied N and therefore, δ(15)N-NO(3)(-) values were of limited assistance in clearly associating nitrate leaching with N inputs. Results suggest that the mineralisation and the nitrification of soil organic N, stimulated by previous and current intensive management, masked the cause of leaching from the isotopic prospective. δ(18)O-NO(3)(-) was of little use, as most values were close to or within the range expected for nitrification regardless of the treatment, which was attributed to the remineralisation of nitrate assimilated by bacteria (mineralisation-immobilisation turnover or MIT) or plants. Only in limited circumstances (low fertiliser application rate in tillage) could direct leaching of synthetic nitrate fertiliser be identified (δ(15)N-NO(3)(-)<0‰ and δ(18)O-NO(3)(-)>15‰). Nevertheless, some useful differences emerged between treatments. δ(15)N-NO(3)(-) values were lower where artificial fertiliser was applied compared with the unfertilised controls and organic waste treatments. Importantly, δ(15)N-NO(3)(-) and δ(18)O-NO(3)(-) variables were negatively correlated in the artificial fertiliser treatment (0.001≤p≤0.05, attributed to the varying proportion of fertiliser-derived and synthetic nitrate being leached) while positively correlated in the dairy wastewater plots (p≤0.01, attributed to limited denitrification). These results suggest that it may be possible to distinguish some nitrate sources if analysing correlations between δ variables from the unsaturated zone. In grassland, the above correlations were related to N input rates, which partly controlled nitrate concentrations in the artificial fertiliser plots (high inputs translated into higher NO(3)(-) concentrations with an increasing proportion of fertiliser-derived and synthetic nitrate) and denitrification in the dairy wastewater plots (high inputs corresponded to more denitrification). As a consequence, nitrate source identification in grassland was more efficient at higher input rates due to differences in δ values widening between treatments.


Subject(s)
Nitrates/analysis , Nitrogen Isotopes , Oxygen Isotopes , Denitrification , Environmental Monitoring/methods , Soil/chemistry , Water Pollutants, Chemical/analysis
8.
J Environ Qual ; 37(1): 138-45, 2008.
Article in English | MEDLINE | ID: mdl-18178886

ABSTRACT

Nitrate (NO(3)) loss from arable systems to surface and groundwater has attracted considerable attention in recent years in Ireland. Little information exists under Irish conditions, which are wet and temperate, on the effects of winter cover crops and different tillage techniques on NO(3) leaching. This study investigated the efficacy of such practices in reducing NO(3) leaching from a spring barley (Hordeum vulgare L.) system in the Barrow River valley, southeast Ireland. The study compared the effect of two tillage systems (plow-based tillage and noninversion tillage) and two over-winter alternatives (no vegetative cover and a mustard cover crop) on soil solution NO(3) concentrations at 90 cm depth over two winter drainage seasons (2003/04 and 2004/05). Soil samples were taken and analyzed for inorganic N. During both years of the study, the use of a mustard cover crop significantly reduced NO(3) losses for the plowed and reduced cultivation treatments. Mean soil solution NO(3) concentrations were between 38 and 70% lower when a cover crop was used, and total N load lost over the winter was between 18 and 83% lower. Results from this study highlight the importance of drainage volume and winter temperatures on NO(3) concentrations in soil solution and overall N load lost. It is suggested that cover crops will be of particular value in reducing NO(3) loss in temperate regions with mild winters, where winter N mineralization is important and high winter temperatures favor a long growing season.


Subject(s)
Agriculture/methods , Nitrates/analysis , Soil Pollutants/analysis , Water Pollution/prevention & control , Crops, Agricultural , Hordeum , Ireland , Nitrogen/analysis , Rain , Soil/analysis , Temperature , Water/analysis
9.
Water Sci Technol ; 51(3-4): 73-81, 2005.
Article in English | MEDLINE | ID: mdl-15850176

ABSTRACT

Against the background of increasing nutrient concentrations in Irish water bodies, this study set out to gain information on the potential of agricultural grassland to lose nutrients to water. Overland flow, flow from artificial subsurface drains and stream flow were gauged and sampled during heavy rainfall events. Dissolved reactive phosphorus (DRP), potassium (K), total ammonia (TA), and total oxidised nitrogen (TON) were measured in water samples. When the nutrient concentrations in water were examined in relation to the grassland management practices of the study catchments it emerged that soil P levels, the application of organic and inorganic fertilisers before heavy rainfall and the presence of grazing animals could all influence nutrient concentrations in surface and subsurface drainage water. Overall, the drainage characteristics of soil were found to have a considerable influence on the potential of land to lose nutrients to water.


Subject(s)
Animal Husbandry/methods , Dairying/methods , Rivers/chemistry , Water Movements , Water Pollutants, Chemical/analysis , Ammonia/analysis , Drainage, Sanitary , Ireland , Nitrogen/analysis , Phosphorus/analysis , Potassium/analysis , Rain , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...