Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Appl ; 17(3): e13680, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505217

ABSTRACT

Genetic monitoring of Pacific salmon in the Columbia River basin provides crucial information to fisheries managers that is otherwise challenging to obtain using traditional methods. Monitoring programs such as genetic stock identification (GSI) and parentage-based tagging (PBT) involve genotyping tens of thousands of individuals annually. Although rare, these large sample collections inevitably include misidentified species, which exhibit low genotyping success on species-specific Genotyping-in-Thousands by sequencing (GT-seq) panels. For laboratories involved in large-scale genotyping efforts, diagnosing non-target species and reassigning them to the appropriate monitoring program can be costly and time-consuming. To address this problem, we identified 19 primer pairs that exhibit consistent cross-species amplification among salmonids and contain 51 species informative variants. These genetic markers reliably discriminate among 11 salmonid species and two subspecies of Cutthroat Trout and have been included in species-specific GT-seq panels for Chinook Salmon, Coho Salmon, Sockeye Salmon, and Rainbow Trout commonly used for Pacific salmon genetic monitoring. The majority of species-informative amplicons (16) were newly identified from the four existing GT-seq panels, thus demonstrating a low-cost approach to species identification when using targeted sequencing methods. A species-calling script was developed that is tailored for routine GT-seq genotyping pipelines and automates the identification of non-target species. Following extensive testing with empirical and simulated data, we demonstrated that the genetic markers and accompanying script accurately identified species and are robust to missing genotypic data and low-frequency, shared polymorphisms among species. Finally, we used these tools to identify Coho Salmon incidentally caught in the Columbia River Chinook Salmon sport fishery and used PBT to determine their hatchery of origin. These molecular and computing resources provide a valuable tool for Pacific salmon conservation in the Columbia River basin and demonstrate a cost-effective approach to species identification for genetic monitoring programs.

2.
Evol Appl ; 17(1): e13623, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38283605

ABSTRACT

Multiple evolutionary processes influence genome-wide allele frequencies and quantifying effects of genetic drift, and multiple forms of selection remain challenging in natural populations. Here, we investigate variation at major effect loci in contrast to patterns of neutral drift across a wide collection of steelhead (Oncorhynchus mykiss) populations that have declined in abundance due to anthropogenic impacts. Whole-genome resequencing of 74 populations of steelhead revealed genome-wide patterns (~8 million SNPs) consistent with expected neutral population structure. However, allelic variation at major effect loci associated with adult migration timing (chromosome 28: GREB1L/ROCK1) and age at maturity (chromosome 25: SIX6) reflected how selection has acted on phenotypic variation in contrast with neutral structure. Variation at major effect loci was influenced by evolutionary processes with differing signals between the strongly divergent Coastal and Inland lineages, while allele frequencies within and among populations within the Inland lineage have been driven by local natural selection as well as recent anthropogenic influences. Recent anthropogenic effects appeared to have influenced the frequency of major effect alleles including artificial selection for specific traits in hatchery stocks with subsequent gene flow into natural populations. Selection from environmental factors at various scales has also likely influenced variation for major effect alleles. These results reveal evolutionary mechanisms that influence allele frequencies at major effect loci that are critical for conservation of phenotypic traits and life history variation of this protected species.

3.
J Fish Biol ; 100(6): 1528-1540, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35439326

ABSTRACT

We used restriction-site associated DNA sequencing for SNP discovery and genotyping of known-sex green sunfish Lepomis cyanellus DNA samples to search for sex-diagnostic single nucleotide polymorphisms (SNPs) and restriction-site associated sequences present in one sex and absent in the other. The bioinformatic analyses discovered candidate SNPs and sex-specific restriction-site associated sequences that fit patterns of male or female heterogametic sex determination systems. However, when primers were developed and tested, no candidates reliably identified phenotypic sex. The top performing SNP candidate (ZW_218) correlated with phenotypic sex 63.0% of the time and the presence-absence loci universally amplified in both sexes. We recommend further investigations that interrogate a larger fraction of the L. cyanellus genome. Additionally, studies on the effect of temperature and rearing density on sex determination, as well as breeding of sex-reversed individuals, could provide more insights into the sex determination system of L. cyanellus.


Subject(s)
Perciformes , Sex , Animals , Base Sequence , Female , Genome , Male , Perciformes/genetics , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
4.
PLoS One ; 14(3): e0211616, 2019.
Article in English | MEDLINE | ID: mdl-30870419

ABSTRACT

Mussels of the genus Bathymodiolus are among the most widespread colonizers of hydrothermal vent and cold seep environments, sustained by endosymbiosis with chemosynthetic bacteria. Presumed species of Bathymodiolus are abundant at newly discovered cold seeps on the Mid-Atlantic continental slope, however morphological taxonomy is challenging, and their phylogenetic affinities remain unestablished. Here we used mitochondrial sequence to classify species found at three seep sites (Baltimore Canyon seep (BCS; ~400m); Norfolk Canyon seep (NCS; ~1520m); and Chincoteague Island seep (CTS; ~1000m)). Mitochondrial COI (N = 162) and ND4 (N = 39) data suggest that Bathymodiolus childressi predominates at these sites, although single B. mauritanicus and B. heckerae individuals were detected. As previous work had suggested that methanotrophic and thiotrophic interactions can both occur at a site, and within an individual mussel, we investigated the symbiont communities in gill tissues of a subset of mussels from BCS and NCS. We constructed metabarcode libraries with four different primer sets spanning the 16S gene. A methanotrophic phylotype dominated all gill microbial samples from BCS, but sulfur-oxidizing Campylobacterota were represented by a notable minority of sequences from NCS. The methanotroph phylotype shared a clade with globally distributed Bathymodiolus spp. symbionts from methane seeps and hydrothermal vents. Two distinct Campylobacterota phylotypes were prevalent in NCS samples, one of which shares a clade with Campylobacterota associated with B. childressi from the Gulf of Mexico and the other with Campylobacterota associated with other deep-sea fauna. Variation in chemosynthetic symbiont communities among sites and individuals has important ecological and geochemical implications and suggests shifting reliance on methanotrophy. Continued characterization of symbionts from cold seeps will provide a greater understanding of the ecology of these unique environments as well and their geochemical footprint in elemental cycling and energy flux.


Subject(s)
Bacteria/genetics , Gills/microbiology , Mytilidae/microbiology , Animals , Atlantic Ocean , Biodiversity , DNA, Mitochondrial , Microbiota/genetics , Phylogeny , RNA, Ribosomal, 16S , Symbiosis
5.
Int J Syst Evol Microbiol ; 66(2): 830-836, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26610851

ABSTRACT

A novel thermophilic, anaerobic, mixotrophic bacterium, designated strain MAG-PB1T, was isolated from a shallow-water hydrothermal vent system in Palaeochori Bay off the coast of the island of Milos, Greece. The cells were Gram-negative, rugose, short rods, approximately 1.0 µm long and 0.5 µm wide. Strain MAG-PB1T grew at 30-70 °C (optimum 60 °C), 0-50 g NaCl l- 1 (optimum 15-20 g l- 1) and pH 5.5-8.0 (optimum pH 6.0). Generation time under optimal conditions was 2.5 h. Optimal growth occurred under chemolithoautotrophic conditions with H2 as the energy source and CO2 as the carbon source. Fe(III), Mn(IV), arsenate and selenate were used as electron acceptors. Peptone, tryptone, Casamino acids, sucrose, yeast extract, d-fructose, α-d-glucose and ( - )-d-arabinose also served as electron donors. No growth occurred in the presence of lactate or formate. The G+C content of the genomic DNA was 66.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Deferrisoma camini, the first species of a recently described genus in the Deltaproteobacteria. Based on the 16S rRNA gene phylogenetic analysis and on physiological, biochemical and structural characteristics, the strain was found to represent a novel species, for which the name Deferrisoma palaeochoriense sp. nov. is proposed. The type strain is MAG-PB1T ( = JCM 30394T = DSM 29363T).


Subject(s)
Deltaproteobacteria/classification , Hydrothermal Vents/microbiology , Phylogeny , Seawater/microbiology , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Deltaproteobacteria/genetics , Deltaproteobacteria/isolation & purification , Fatty Acids/chemistry , Greece , Iron/metabolism , Mediterranean Sea , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
6.
BMC Evol Biol ; 11: 96, 2011 Apr 13.
Article in English | MEDLINE | ID: mdl-21489281

ABSTRACT

BACKGROUND: Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galápagos Rift. RESULTS: Genetic differentiation (F(ST)) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. CONCLUSIONS: Compared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events.


Subject(s)
Aquatic Organisms/genetics , Genetic Variation , Polychaeta/genetics , Animals , Ecosystem , Geography , Mitochondria/genetics , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...