Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
J Med Chem ; 67(13): 11168-11181, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38932616

ABSTRACT

ß-Glucocerebrosidase (GBA/GCase) mutations leading to misfolded protein cause Gaucher's disease and are a major genetic risk factor for Parkinson's disease and dementia with Lewy bodies. The identification of small molecule pharmacological chaperones that can stabilize the misfolded protein and increase delivery of degradation-prone mutant GCase to the lysosome is a strategy under active investigation. Here, we describe the first use of fragment-based drug discovery (FBDD) to identify pharmacological chaperones of GCase. The fragment hits were identified by using X-ray crystallography and biophysical techniques. This work led to the discovery of a series of compounds that bind GCase with nM potency and positively modulate GCase activity in cells.


Subject(s)
Allosteric Site , Drug Discovery , Glucosylceramidase , Glucosylceramidase/metabolism , Glucosylceramidase/antagonists & inhibitors , Glucosylceramidase/chemistry , Humans , Crystallography, X-Ray , Structure-Activity Relationship , Models, Molecular , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/metabolism
2.
Nicotine Tob Res ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38919117

ABSTRACT

INTRODUCTION: The high comorbidity between schizophrenia and cigarette smoking points to a possible shared heritable factor predisposing individuals with schizophrenia to nicotine addiction. The N-methyl-D-aspartate (NMDA) receptor has been highly implicated in both schizophrenia and nicotine addiction. METHODS: In the present study, we used mice with a null mutation on the serine racemase gene (srr), an established risk gene for schizophrenia, which encodes the enzyme to produce the NMDA receptor co-agonist D-serine, to model the pathology of schizophrenia and to determine whether NMDA receptor hypofunction reduced the ability of srr-/- mice to identify nicotine's subjective effects. Established nicotine discrimination procedures were used to train srr-/- and wild-type (WT) mice to discriminate 0.4 mg/kg nicotine under a 10-response fixed-ratio (FR10) schedule of food reinforcement. RESULTS: Results show that WT mice reliably acquired 0.4 mg/kg nicotine discrimination in about 54 training session, whereas srr-/- mice failed to acquire robust 0.4 mg/kg nicotine discrimination even after extended (>70) training sessions. These results show that NDMA receptor hypofunction in srr-/- mice decreased sensitivity to the interoceptive effects of nicotine. CONCLUSIONS: Projected to humans, NMDA receptor hypofunction caused by mutations to the serine racemase gene in schizophrenia may reduce sensitivity to nicotine's subjective effects leading to increased nicotine consumption to produce the same effects as those unaffected by schizophrenia. IMPLICATIONS: There is high comorbidity between schizophrenia and nicotine dependence as well as possible shared genetic risk factors between the two. The serine racemase knockout mouse (srr-/-) with NMDA receptor hypofunction has been developed a model for schizophrenia. We found that srr-/- mice were unable to acquire 0.4 mg/kg nicotine discrimination, whilst wild-type mice readily discriminated nicotine. These results show that decreased NMDA receptor function present in srr-/- mice and patients with schizophrenia may result in reduced sensitivity to nicotine's interoceptive effects, leading to increased nicotine consumption to produce the same subjective effects as those unaffected by schizophrenia.

3.
Biochem Pharmacol ; : 116376, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906225

ABSTRACT

For nearly fifty years, the dopamine hypothesis has dominated our understanding of the pathophysiology of schizophrenia and provided the lone target for drug development. However, with the exception of clozapine, the dopamine D2 receptor antagonizing anti-psychotic drugs have little impact on the negative symptoms and cognitive deficits, aspects of the disorder that robustly predict outcome. Pathologic studies reveal cortical atrophy and wide-spread loss of glutamatergic synaptic spines, unexplained by dopaminergic malfunction. Recent genome-wide association studies indicate that at least thirty risk genes for schizophrenia encode proteins localized to the glutamatergic synapse and inhibit glutamate neurotransmission, especially at the NMDA receptor. To function, the NMDA receptor requires the binding of glycine (primarily in the cerebellum and brainstem) or D-serine (in forebrain) to the NR1 channel subunit of the NMDA receptor. Genetically silencing the gene (srr) encoding serine racemase, the biosynthetic enzyme for D-serine, results in forebrain NMDA receptor hypofunction. The srr-/- mice have 90 % loss of endogenous D-serine and approximately 70 % decrease in NMDA receptor function. Several animal models of schizophrenia are based on behavioral and pharmacologic strategies, which have negligible validity with regard to the fundamental etiology of schizophrenia. We summarize here the results of a mouse model, in which srr, one of the two dozen or more risk gene for schizophrenia that affect NMDA receptor function, has been inactivated. The srr-/- mice exhibit striking similarities to schizophrenia including cortical atrophy, loss of cortico-limbic glutamatergic synapses, increased sub-cortical dopamine release, EEG abnormalities, and cognitive impairments. The limited efficacy of drugs targeting the glutamatergic synapse on DSM-5 diagnosed criteria for schizophrenia used in clinical trials may reflect the fact that only 30 % of the patients have impaired glutamatergic neurotransmission, resulting from the genetic heterogeneity of the disorder.

4.
bioRxiv ; 2023 May 29.
Article in English | MEDLINE | ID: mdl-37398055

ABSTRACT

The biological significance of a small supernumerary marker chromosome that results in dosage alterations to chromosome 9p24.1, including triplication of the GLDC gene encoding glycine decarboxylase, in two patients with psychosis is unclear. In an allelic series of copy number variant mouse models, we identify that triplication of Gldc reduces extracellular glycine levels as determined by optical fluorescence resonance energy transfer (FRET) in dentate gyrus (DG) but not in CA1, suppresses long-term potentiation (LTP) in mPP-DG synapses but not in CA3-CA1 synapses, reduces the activity of biochemical pathways implicated in schizophrenia and mitochondrial bioenergetics, and displays deficits in prepulse inhibition, startle habituation, latent inhibition, working memory, sociability and social preference. Our results thus provide a link between a genomic copy number variation, biochemical, cellular and behavioral phenotypes, and further demonstrate that GLDC negatively regulates long-term synaptic plasticity at specific hippocampal synapses, possibly contributing to the development of neuropsychiatric disorders.

5.
Neuropsychopharmacology ; 48(10): 1551, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37460771
6.
Transpl Infect Dis ; 25(3): e14059, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37005911

ABSTRACT

BACKGROUND: The Centers for Disease Control and Prevention led an investigation to determine if Strongyloides infection in a right kidney recipient was an existing chronic infection, or if the infection was transmitted from an infected organ donor. METHODS: Evidence regarding the organ donor and organ recipients Strongyloides testing, treatment, and risk factors were gathered and evaluated. The case classification algorithm created by the Disease Transmission Advisory Committee was utilized. RESULTS: The organ donor had risk factors for Strongyloides infection; the banked donor specimen, submitted for serology testing 112 days post-donor death, was positive. The right kidney recipient was negative for Strongyloides infection pretransplant. Strongyloides infection was diagnosed via small bowel and stomach biopsies. The left kidney recipient had risk factors for Strongyloides infection. Two posttransplant Strongyloides antibody tests were negative at 59 and 116 days posttransplant; repeat antibody tests returned positive at 158 and 190 days posttransplant. Examination of bronchial alveolar lavage fluid collected 110 days posttransplant from the heart recipient showed a parasite morphologically consistent with Strongyloides species. She subsequently developed complications from Strongyloides infection, including hyperinfection syndrome and disseminated strongyloidiasis. Based on the evidence from our investigation, donor-derived strongyloidiasis was suspected in one recipient and proven in two recipients. CONCLUSION: The results of this investigation support the importance of preventing donor-derived Strongyloides infections by laboratory-based serology testing of solid organ donors. Donor positive testing results would direct the monitoring and treatment of recipients to avoid severe complications.


Subject(s)
Organ Transplantation , Strongyloides stercoralis , Strongyloidiasis , Animals , Female , Humans , Strongyloidiasis/diagnosis , Strongyloidiasis/drug therapy , Strongyloidiasis/parasitology , Michigan , Ohio , Tissue Donors , California , Organ Transplantation/adverse effects
7.
Mol Psychiatry ; 27(10): 4218-4233, 2022 10.
Article in English | MEDLINE | ID: mdl-35701597

ABSTRACT

Remarkable advances have been made in schizophrenia (SCZ) GWAS, but gleaning biological insight from these loci is challenging. Genetic influences on gene expression (e.g., eQTLs) are cell type-specific, but most studies that attempt to clarify GWAS loci's influence on gene expression have employed tissues with mixed cell compositions that can obscure cell-specific effects. Furthermore, enriched SCZ heritability in the fetal brain underscores the need to study the impact of SCZ risk loci in specific developing neurons. MGE-derived cortical interneurons (cINs) are consistently affected in SCZ brains and show enriched SCZ heritability in human fetal brains. We identified SCZ GWAS risk genes that are dysregulated in iPSC-derived homogeneous populations of developing SCZ cINs. These SCZ GWAS loci differential expression (DE) genes converge on the PKC pathway. Their disruption results in PKC hyperactivity in developing cINs, leading to arborization deficits. We show that the fine-mapped GWAS locus in the ATP2A2 gene of the PKC pathway harbors enhancer marks by ATACseq and ChIPseq, and regulates ATP2A2 expression. We also generated developing glutamatergic neurons (GNs), another population with enriched SCZ heritability, and confirmed their functionality after transplantation into the mouse brain. Then, we identified SCZ GWAS risk genes that are dysregulated in developing SCZ GNs. GN-specific SCZ GWAS loci DE genes converge on the ion transporter pathway, distinct from those for cINs. Disruption of the pathway gene CACNA1D resulted in deficits of Ca2+ currents in developing GNs, suggesting compromised neuronal function by GWAS loci pathway deficits during development. This study allows us to identify cell type-specific and developmental stage-specific mechanisms of SCZ risk gene function, and may aid in identifying mechanism-based novel therapeutic targets.


Subject(s)
Schizophrenia , Animals , Mice , Humans , Schizophrenia/genetics , Schizophrenia/metabolism , Genome-Wide Association Study/methods , Interneurons/metabolism , Neurons/metabolism , Brain/metabolism , Genetic Predisposition to Disease/genetics
8.
Public Health Rep ; 137(2_suppl): 35S-39S, 2022.
Article in English | MEDLINE | ID: mdl-35699392

ABSTRACT

Contact tracing is an evidence-based intervention to control many communicable diseases, including COVID-19. Before the COVID-19 pandemic, contact tracing in Michigan focused on HIV, sexually transmitted infections, and tuberculosis, and it was conducted by state and local health department staff. Within 2 weeks of the first reported COVID-19 cases in Michigan in March 2020, the existing public health workforce was overwhelmed by the need for contact tracing and daily symptom monitoring. This case study narrates the development of a staffing plan that included volunteers and contractual staff to conduct centralized contact tracing in a home-rule state (ie, a state in which local health departments have full authority and autonomy under public health code to conduct the functions necessary to prevent disease, including contact tracing). This case study details various training, workforce management, and technology tools that were used. During the study period (May 2020-June 2021), contact tracers called 432 218 contacts and 269 439 were successfully reached, 48 134 of whom reported developing symptoms. The most important lesson learned was the need for more automated processes to improve efficiency in processing volunteer applicants, training, and scheduling. Nonetheless, the centralized workforce was successful, was flexible, and met the changing demands in Michigan.


Subject(s)
COVID-19 , Contact Tracing , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Public Health , Workforce
9.
Cell Mol Neurobiol ; 42(1): 279-289, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32445040

ABSTRACT

D-serine is synthesized by serine racemase (SR) and is a co-agonist at forebrain N-methyl-D-aspartate receptors (NMDARs). D-serine and SR are expressed primarily in neurons, but not in quiescent astrocytes. In this study, we examined the localization of D-serine and SR in the mouse striatum and the effects of genetically silencing SR expression in GABAergic interneurons (iSR-/-). iSR-/- mice had substantially reduced SR expression almost exclusively in striatum, but only exhibited marginal D-serine reduction. SR positive cells in the striatum showed strong co-localization with dopamine- and cyclic AMP-regulated neuronal phosphoprotein (DARPP32) in wild type mice. Transgenic fluorescent reporter mice for either the D1 or D2 dopamine receptors exhibited a 65:35 ratio for co-localization with D1and D2 receptor positive cells, respectively. These results indicate that GABAergic medium spiny neurons receiving dopaminergic inputs in striatum robustly and uniformly express SR. In behavioral tests, iSR-/- mice showed a blunted response to the hedonic and stimulant effects of cocaine, without affecting anxiety-related behaviors. Because the cocaine effects have been shown in the constitutive SR-/- mice, the restriction of the blunted response to cocaine to iSR-/- mice reinforces the conclusion that D-serine in striatal GABAergic neurons plays an important role in mediating dopaminergic stimulant effects. Results in this study suggest that SR in striatal GABAergic neurons is synthesizing D-serine, not as a glutamatergic co-transmitter, but rather as an autocrine whereby the GABAergic neurons control the excitability of their NMDARs by determining the availability of the co-agonist, D-serine.


Subject(s)
Neurons , Racemases and Epimerases , Animals , Corpus Striatum/cytology , Mice , Mice, Knockout , Neurons/enzymology , Racemases and Epimerases/metabolism , Serine/metabolism
10.
MMWR Morb Mortal Wkly Rep ; 70(49): 1712-1714, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34882659

ABSTRACT

On November 10, 2021, the Michigan Department of Health and Human Services (MDHHS) was notified of a rapid increase in influenza A(H3N2) cases by the University Health Service (UHS) at the University of Michigan in Ann Arbor. Because this outbreak represented some of the first substantial influenza activity during the COVID-19 pandemic, CDC, in collaboration with the university, MDHHS, and local partners conducted an investigation to characterize and help control the outbreak. Beginning August 1, 2021, persons with COVID-19-like* or influenza-like illness evaluated at UHS received testing for SARS-CoV-2, influenza, and respiratory syncytial viruses by rapid multiplex molecular assay.† During October 6-November 19, a total of 745 laboratory-confirmed influenza cases were identified.§ Demographic information, genetic characterization of viruses, and influenza vaccination history data were reviewed. This activity was conducted consistent with applicable federal law and CDC policy.¶.


Subject(s)
Disease Outbreaks , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Adolescent , Adult , Female , Humans , Male , Michigan/epidemiology , Students/statistics & numerical data , Universities , Young Adult
11.
J Med Chem ; 64(16): 12286-12303, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34387469

ABSTRACT

Aberrant activation of the mitogen-activated protein kinase pathway frequently drives tumor growth, and the ERK1/2 kinases are positioned at a key node in this pathway, making them important targets for therapeutic intervention. Recently, a number of ERK1/2 inhibitors have been advanced to investigational clinical trials in patients with activating mutations in B-Raf proto-oncogene or Ras. Here, we describe the discovery of the clinical candidate ASTX029 (15) through structure-guided optimization of our previously published isoindolinone lead (7). The medicinal chemistry campaign focused on addressing CYP3A4-mediated metabolism and maintaining favorable physicochemical properties. These efforts led to the identification of ASTX029, which showed the desired pharmacological profile combining ERK1/2 inhibition with suppression of phospho-ERK1/2 (pERK) levels, and in addition, it possesses suitable preclinical pharmacokinetic properties predictive of once daily dosing in humans. ASTX029 is currently in a phase I-II clinical trial in patients with advanced solid tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , Indoles/therapeutic use , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Crystallography, X-Ray , Dogs , Humans , Indoles/chemical synthesis , Indoles/metabolism , Indoles/pharmacokinetics , Male , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/metabolism , Molecular Structure , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Mas , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Pyrimidines/pharmacokinetics , Rats, Sprague-Dawley , Rats, Wistar , Structure-Activity Relationship , Xenograft Model Antitumor Assays
12.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34330827

ABSTRACT

There are no validated biomarkers for schizophrenia (SCZ), a disorder linked to neural network dysfunction. We demonstrate that collapsin response mediator protein-2 (CRMP2), a master regulator of cytoskeleton and, hence, neural circuitry, may form the basis for a biomarker because its activity is uniquely imbalanced in SCZ patients. CRMP2's activity depends upon its phosphorylation state. While an equilibrium between inactive (phosphorylated) and active (nonphosphorylated) CRMP2 is present in unaffected individuals, we show that SCZ patients are characterized by excess active CRMP2. We examined CRMP2 levels first in postmortem brains (correlated with neuronal morphometrics) and then, because CRMP2 is expressed in lymphocytes as well, in the peripheral blood of SCZ patients versus age-matched unaffected controls. In the brains and, more starkly, in the lymphocytes of SCZ patients <40 y old, we observed that nonphosphorylated CRMP2 was higher than in controls, while phosphorylated CRMP2 remained unchanged from control. In the brain, these changes were associated with dendritic structural abnormalities. The abundance of active CRMP2 with insufficient opposing inactive p-CRMP2 yielded a unique lowering of the p-CRMP2:CRMP2 ratio in SCZ patients, implying a disruption in the normal equilibrium between active and inactive CRMP2. These clinical data suggest that measuring CRMP2 and p-CRMP2 in peripheral blood might reflect intracerebral processes and suggest a rapid, minimally invasive, sensitive, and specific adjunctive diagnostic aid for early SCZ: increased CRMP2 or a decreased p-CRMP2:CRMP2 ratio may help cinch the diagnosis in a newly presenting young patient suspected of SCZ (versus such mimics as mania in bipolar disorder, where the ratio is high).


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Nerve Net/metabolism , Nerve Tissue Proteins/metabolism , Schizophrenia/diagnosis , Biomarkers/metabolism , Gene Expression Regulation , Genome-Wide Association Study , Humans , Intercellular Signaling Peptides and Proteins/genetics , Nerve Tissue Proteins/genetics
13.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34083436

ABSTRACT

Prefrontal control of cognitive functions critically depends upon glutamatergic transmission and N-methyl D-aspartate (NMDA) receptors, the activity of which is regulated by dopamine. Yet whether the NMDA receptor coagonist d-serine is implicated in the dopamine-glutamate dialogue in the prefrontal cortex (PFC) and other brain areas remains unexplored. Here, using electrophysiological recordings, we show that d-serine is required for the fine-tuning of glutamatergic neurotransmission, neuronal excitability, and synaptic plasticity in the PFC through the actions of dopamine at D1 and D3 receptors. Using in vivo microdialysis, we show that D1 and D3 receptors exert a respective facilitatory and inhibitory influence on extracellular levels and activity of d-serine in the PFC, with actions expressed primarily via the cAMP/protein kinase A (PKA) signaling cascade. Further, using functional magnetic resonance imaging (fMRI) and behavioral assessment, we show that d-serine is required for the potentiation of cognition by D3R blockade as revealed in a test of novel object recognition memory. Collectively, these results unveil a key role for d-serine in the dopaminergic neuromodulation of glutamatergic transmission and PFC activity, findings with clear relevance to the pathogenesis and treatment of diverse brain disorders involving alterations in dopamine-glutamate cross-talk.


Subject(s)
Dopamine/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Serine/metabolism , Animals , Glutamic Acid/metabolism , Male , Mice , Mice, Knockout , Racemases and Epimerases/deficiency , Racemases and Epimerases/genetics , Receptors, Dopamine/metabolism , Schizophrenia , Synaptic Transmission/drug effects
14.
JAMA Psychiatry ; 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34132763
15.
Sci Rep ; 11(1): 9031, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33907230

ABSTRACT

Abnormalities in electroencephalographic (EEG) biomarkers occur in patients with schizophrenia and those clinically at high risk for transition to psychosis and are associated with cognitive impairment. Converging evidence suggests N-methyl-D-aspartate receptor (NMDAR) hypofunction plays a central role in the pathophysiology of schizophrenia and likely contributes to biomarker impairments. Thus, characterizing these biomarkers is of significant interest for early diagnosis of schizophrenia and development of novel treatments. We utilized in vivo EEG recordings and behavioral analyses to perform a battery of electrophysiological biomarkers in an established model of chronic NMDAR hypofunction, serine racemase knockout (SRKO) mice, and their wild-type littermates. SRKO mice displayed impairments in investigation-elicited gamma power that corresponded with reduced short-term social recognition and enhanced background (pre-investigation) gamma activity. Additionally, SRKO mice exhibited sensory gating impairments in both evoked-gamma power and event-related potential amplitude. However, other biomarkers including the auditory steady-state response, sleep spindles, and state-specific power spectral density were generally neurotypical. In conclusion, SRKO mice demonstrate how chronic NMDAR hypofunction contributes to deficits in certain translationally-relevant EEG biomarkers altered in schizophrenia. Importantly, our gamma band findings suggest an aberrant signal-to-noise ratio impairing cognition that occurs with NMDAR hypofunction, potentially tied to impaired task-dependent alteration in functional connectivity.


Subject(s)
Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/metabolism , Animals , Biomarkers , Disease Models, Animal , Electroencephalography , Female , Gamma Rhythm , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism , Schizophrenia/diagnosis , Schizophrenia/physiopathology , Sensory Gating , Social Behavior
16.
J Viral Hepat ; 28(2): 440-444, 2021 02.
Article in English | MEDLINE | ID: mdl-33184976

ABSTRACT

Using Michigan public health data, we assessed geographical access to specialist providers for hepatitis C virus (HCV) treatment in urban and rural areas in Michigan and explored correlates of HCV in these areas to help inform HCV elimination planning and resource allocations. We found higher HCV incidence in urban areas, lower treatment specialist access in rural areas, but few correlates of HCV across adult populations in both areas. State and local HCV elimination planning should include population-based screening among all adults and address geographical barriers to care.


Subject(s)
Hepacivirus , Hepatitis C , Adult , Hepatitis C/epidemiology , Humans , Michigan/epidemiology , Public Health , Rural Population
17.
Brain Res ; 1751: 147202, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33171153

ABSTRACT

d-Serine plays an important role in modulating N-methyl-d-aspartate receptor (NMDAR) neurotransmission in the mammalian brain by binding to the receptor's glycine modulatory site (GMS). The cytosolic enzyme serine racemase (SR) converts L-serine to d-serine, while the peroxisomal enzyme d-amino acid oxidase (DAAO) catalyzes the breakdown of d-serine. Although it is important to understand how the activities of SR and DAAO regulate d-serine levels, very little is known about the mechanisms that regulate the expression of SR and DAAO. In this study, we investigated whether the different centrally active drugs affect the expression of SR and DAAO in adult mouse brain. We found that the NMDAR antagonist, MK801, and cocaine, psychotropic drugs that both augment glutamate release, reduce the expression of SR and DAAO. This regulation is brain region selective, and in the case of cocaine, is reversed in part byα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX). However, d-serine and antipsychotics do not regulate SR and DAAO protein levels. In a genetic model of SR disruption, we found that DAAO expression was unaltered in SR conditional knockout mice, in which tissue d-serine content remains fairly stable despite marked reduction in SR expression. This study reveals a new mechanism by which AMPAR activity could regulate NMDAR function via d-serine availability.


Subject(s)
D-Amino-Acid Oxidase/metabolism , Racemases and Epimerases/metabolism , Serine/metabolism , Animals , Brain/metabolism , Cocaine/pharmacology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , D-Amino-Acid Oxidase/genetics , Dizocilpine Maleate/pharmacology , Female , Gene Expression/genetics , Gene Expression Regulation/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Quinoxalines/pharmacology , Racemases and Epimerases/genetics , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
19.
J Neurosci ; 40(50): 9564-9575, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33158959

ABSTRACT

d-serine is the primary NMDAR coagonist at mature forebrain synapses and is synthesized by the enzyme serine racemase (SR). However, our understanding of the mechanisms regulating the availability of synaptic d-serine remains limited. Though early studies suggested d-serine is synthesized and released from astrocytes, more recent studies have demonstrated a predominantly neuronal localization of SR. More specifically, recent work intriguingly suggests that SR may be found at the postsynaptic density, yet the functional implications of postsynaptic SR on synaptic transmission are not yet known. Here, we show an age-dependent dendritic and postsynaptic localization of SR and d-serine by immunohistochemistry and electron microscopy in mouse CA1 pyramidal neurons. In addition, using a single-neuron genetic approach in SR conditional KO mice from both sexes, we demonstrate a cell-autonomous role for SR in regulating synaptic NMDAR function at Schaffer collateral (CA3)-CA1 synapses. Importantly, single-neuron genetic deletion of SR resulted in the elimination of LTP at 1 month of age, which could be rescued by exogenous d-serine. Interestingly, there was a restoration of LTP by 2 months of age that was associated with an upregulation of synaptic GluN2B. Our findings support a cell-autonomous role for postsynaptic neuronal SR in regulating synaptic NMDAR function and suggests a possible autocrine mode of d-serine action.SIGNIFICANCE STATEMENT NMDARs are key regulators of neurodevelopment and synaptic plasticity and are unique in their requirement for binding of a coagonist, which is d-serine at most forebrain synapses. However, our understanding of the mechanisms regulating synaptic d-serine availability remains limited. d-serine is synthesized in the brain by the neuronal enzyme serine racemase (SR). Here, we show dendritic and postsynaptic localization of SR and d-serine in CA1 pyramidal neurons. In addition, using single-neuron genetic deletion of SR, we establish a role of postsynaptic SR in regulating NMDAR function. These results support an autocrine mode of d-serine action at synapses.


Subject(s)
Dendrites/metabolism , Pyramidal Cells/metabolism , Racemases and Epimerases/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Age Factors , Animals , CA1 Region, Hippocampal/metabolism , Female , Male , Mice , Mice, Knockout , Neuronal Plasticity/physiology , Racemases and Epimerases/genetics , Synaptic Transmission/physiology
20.
Front Neurosci ; 14: 927, 2020.
Article in English | MEDLINE | ID: mdl-33013307

ABSTRACT

The neurotoxic action of glutamic acid was first described by Lucas and Newhouse, who demonstrated neural degeneration in the inner layers of the neonatal mouse retina after systemic treatment with L-glutamate. Olney extended these findings by showing that neuronal degeneration affected other brain structures including neurons within the arcuate nucleus of the hypothalamus and the area postrema, that the lesion spared axons passing through these areas, and that the neurotoxic potency of glutamate analogs correlated with their excitatory potency, resulting in the designation "excitotoxins." As this method affected only a small number of brain regions, it was not suitable for targeted brain lesions. The Coyle laboratory showed that direct injection of the potent glutamate receptor agonist, kainic acid, into the rat striatum caused a rapid degeneration of intrinsic neurons while sparing axons of passage or termination including the unmyelinated dopaminergic terminals. Kainic acid also exhibited this perikaryal-specific and axon-sparing profile when injected into the cerebellum, hippocampus and eye. However, neuronal vulnerability was highly variable, with hippocampal CA3, pyriform cortex and amygdala neurons exhibiting great sensitivity due to kainate's high convulsive activity. In a comparison study, ibotenic acid, a potent glutamatergic agonist isolated from the amanita muscaria mushroom, was found to have excitotoxic potency comparable to kainate but was far less epileptogenic. Ibotenate produced spherical, perikaryal-specific lesions regardless of the site of injection, and experiments with specific glutamate receptor antagonists showed that its effects were mediated by the N-methyl-D-aspartate receptor. Because of this uniform neurotoxicity and near ubiquitous efficacy, ibotenic acid became the excitotoxic lesioning agent of choice. The discovery of the excitotoxic properties of the tryptophan metabolite quinolinic acid and of the anti-excitotoxic, neuroprotective effects of the related metabolite kynurenic acid in the Schwarcz laboratory then gave rise to the concept that these endogenous compounds may play causative roles in the neuropathology of a wide range of neurological and psychiatric disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...