Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 21(2): e202301689, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38224527

ABSTRACT

Herein we describe the in situ inhibitory activity of three hybrid films (FL1, FL2, and FL3) against two wild strains of Colletotrichum gloeosporioides and Penicillium digitatum as causal agents of rot in Persian limes. The films FL2 and FL3 contained 1.0 and 1.3 % weight/volume Litsea glaucescens essential oil (LgEO) and significantly (p<0.05) delayed rot emergence in Persian limes caused by both pathogens up to 10 days. The physicochemical properties of LgEO and hybrid films were obtained, whereas detailed HPLC profiling revealed that fruit covered with these films significantly (p<0.01) preserved reducing sugars (sucrose, fructose, and glucose), organic acids (citric acid, ascorbic acid, malic acid, and oxalic acid), and flavonoids with nutraceutical activity (hesperidin, eriocitrin, naruritin, neohesperidin, diosmin, vitexin, rutin, and quercetin). This evidence sustains that the composites generated in this investigation improve the shelf life of Persian limes and conserve their nutraceutical content.


Subject(s)
Citrus , Litsea , Oils, Volatile , Antifungal Agents/pharmacology , Antifungal Agents/analysis , Oils, Volatile/analysis , Fruit/chemistry
2.
Chem Biodivers ; 19(8): e202200441, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35820029

ABSTRACT

Avocadoes are a rich source of nutrients and nutraceuticals that preserve human health. Nevertheless, this fruit is susceptible to phytopathogen infection during the postharvest period causing severe economic losses. Herein, we report on the in situ antifungal assessment of biodegradable films impregnated with the essential oil of Cinnamomum verum (CvEO) as natural fungistatic coatings to extend postharvest quality of Hass avocadoes (Persea americana cv. Hass). These coatings were evaluated on fruits previously infected with a native strain of Fusarium verticillioides. The cytotoxic assessment of CvEO on F. verticillioides revealed a minimum inhibitory concentration of 0.3±0.0 g L-1 whereas its chemical profiling showed (E)-cinnamaldehyde (45.9 %) 1,3,8-p-menthatriene (7.9 %) and linalool (6.8 %) as the major bioactive compounds. Four coatings (FC1-FC4) were made using chitosan (1 %) and a diverse quantity of CvEO (0.4-1.3 % w/v). The physicochemical properties demonstrated that the films FC3 and FC4 have the optimal characteristics of a food coating. Avocadoes preserved with the films FC3 and FC4 substantially kept (p<0.01) fruit firmness and the nutraceutical content of infected avocados at least for 21 d. The results of the present investigation suggest that our hybrid materials can conserve basic nutritional parameters such as fiber, protein, reducing sugars, as well as the content of unsaturated fatty acids which are the main nutraceuticals of this fruit.


Subject(s)
Fusariosis , Oils, Volatile , Persea , Cinnamomum zeylanicum , Dietary Supplements , Fruit/chemistry , Humans , Oils, Volatile/chemistry , Persea/chemistry
3.
Polymers (Basel) ; 14(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35631932

ABSTRACT

Hass avocadoes are one of the most popular fruits consumed worldwide because of their nutritional and nutraceutical content. Nevertheless, these fruits are susceptible to phytopathogen attacks that decrease fruit quality during the postharvest period. Herein we present the results of the in situ fungistatic activity of four hybrid films (FT1−FT4) manufactured with chitosan and different concentrations of the essential oil of thyme (TvEO). The films were evaluated as biodegradable materials to prevent fruit decay triggered by Clonostachys rosea which is considered an emergent phytopathogen of this crop. The in situ fungistatic strength, spectroscopic properties (FT-IR), optical features (transmittance/opacity), and consistency obtained by microscopic analysis (SEM), indicated that the films FT3 and FT4 possessed the best physicochemical properties to protect Hass avocadoes against the soft rot produced by C. rosea. Avocadoes treated with the films FT3 and FT4 significantly (p < 0.01) conserved fruit firmness and nutritional composition (protein, fat, fiber, and reducing sugars) as well as the nutraceutical content (oleic, palmitoleic, linoleic, and palmitic acids) of infected avocados for 21 days. Our results validate the potential use of the films FT3 and FT4 to prevent the soft rot caused by C. rosea and to improve the shelf life of Hass avocadoes.

SELECTION OF CITATIONS
SEARCH DETAIL
...