Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Photochem Photobiol Sci ; 9(1): 110-3, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20062851

ABSTRACT

N-Acetyloxy-2-pyridinethiones, otherwise known as Barton esters, are a class of molecules that can be easily photolysed via single-photon excitation to facilitate the controlled release of carbon or oxygen-centred radicals. In the present work, we investigate the two-photon chemistry of a simple Barton ester, and show that this material can be photolysed via two-photon excitation, with a two-photon bleaching cross section value of 0.13 +/- 0.01 GM.

2.
J Org Chem ; 74(23): 9126-31, 2009 Dec 04.
Article in English | MEDLINE | ID: mdl-19904904

ABSTRACT

The reactivity of chloro- and fluoro(N-methyl-3-pyridinium)carbenes was examined by laser flash photolysis, where the halo(pyridinium)carbenes formed ylides with pyridine, acetonitrile, and acetone. Although the halo(pyridinium)carbenes reacted within the time of the laser pulse, their relative reactivities with a series of alkenes could be obtained from quenching experiments by using carbene-pyridine ylides. Their relative order of reactivity with the alkenes and their poor overall selectivity showed that the halo(pyridinium)carbenes are strongly reactive electrophilic species. Computational studies demonstrated that the alkene (HOMO)-carbene (LUMO) interaction is predominant in halo(pyridinium)carbene-alkene reactions, supporting the electrophilic nature of these species.

3.
J Org Chem ; 74(3): 1148-55, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19178352

ABSTRACT

A comprehensive series of halo(pyridyl)carbenes was generated by laser flash photolysis of the appropriate diazirines. Only the chloro- and bromo(2-pyridyl)carbenes and the chloro- and bromo(3-pyridyl)carbenes could be directly observed, but the reactivity of all nine halo(pyridyl)carbenes could be directly studied using the standard and a modified pyridine-ylide approach. The carbenes were all ambiphilic, being highly reactive toward both electron-rich and election-deficient alkenes. Second-order rate constants for these reactions ranged from 2.9 x 10(6) to 3.5 x 10(9) M(-1) s(-1) and depended on both the position of the nitrogen atom within the pyridine ring and the nature of the halogen group, as well as the electrophilicity or nucleophilicity of the alkene. A reactivity trend with respect to the location of the nitrogen within the pyridine ring was observed, with the 4-pyridyl carbenes being the most reactive followed by the 2-pyridylcarbenes and then the 3-pyridylcarbenes being the least reactive. This observed reactivity trend is consistent with the pyridyl ring acting as an overall electron-withdrawing group. The results also show that resonance delocalization of electron density into the nitrogen atom of the 4-pyridyl- and 2-pyridylcarbenes in the transition state significantly reduces the effect of the adjacent halogen (F, Cl, or Br) on the reactivity of the pyridyl carbenes with a series of alkenes.

4.
J Org Chem ; 72(26): 10022-8, 2007 Dec 21.
Article in English | MEDLINE | ID: mdl-18004869

ABSTRACT

Time-resolved conversion of a series of beta-hydroxy arylethyl radicals with electron-donating and -withdrawing aromatic substituents to their corresponding styrene radical cation via heterolytic loss of the beta-hydroxy leaving group was examined with nanosecond laser flash photolysis. In all cases, the reaction was catalyzed by added perchloric acid. Radicals 2a-d reacted via a pre-equilibrium protonation mechanism in acidic 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), and measuring rate constants for radical cation formation as a function of acid content allowed for the determination of absolute rate constants ranging from 3.6 x 10(6) to 3.8 x 10(7) s(-1) for the loss of water from the protonated beta-hydroxy arylethyl radicals 2a-d, as well as the acidity constants, pKa approximately 1.5 (in HFIP), for the protonated radicals. The 4-methoxy-substituted beta-hydroxy arylethyl radical 2e reacted by rate determining protonation in HFIP with a second-order rate constant of k(H+) = 7.8 x 10(8) M(-1) s(-1). However, in acetonitrile, 2,2,2-trifluoroethanol, and mixtures of these two solvents, 2e reacted by pre-equilibrium protonation, allowing for solvent effects on the rate constant for loss of water from the protonated radical 2e to be determined. With use of these data, substituent electronic effects on the kinetics of the beta-heterolysis reaction are discussed. Differences in the effect of solvent on the rate constant for loss of water from the protonated beta-hydroxy arylethyl radicals and other beta-substituted arylethyl radicals are also discussed.


Subject(s)
Acetonitriles/chemistry , Benzene Derivatives/chemistry , Benzene Derivatives/chemical synthesis , Styrenes/chemistry , Trifluoroethanol/chemistry , Acetonitriles/radiation effects , Benzene Derivatives/radiation effects , Catalysis , Free Radicals/chemical synthesis , Free Radicals/chemistry , Free Radicals/radiation effects , Kinetics , Lasers , Molecular Structure , Perchlorates/chemistry , Photolysis , Solvents/chemistry , Solvents/radiation effects , Stereoisomerism , Styrenes/radiation effects , Trifluoroethanol/radiation effects
5.
J Am Chem Soc ; 128(46): 14836-44, 2006 Nov 22.
Article in English | MEDLINE | ID: mdl-17105293

ABSTRACT

A number of para-substituted chloro(aryl)carbenes are generated within the cavities of a series of dry alkali metal cation-exchanged zeolites (LiY, NaY, KY, RbY, and CsY) upon laser flash photolysis of the corresponding diazirine precursor. The absolute reactivity of the chloro(aryl)carbene is found to be strongly dependent on both the nature of the electron-donating and -withdrawing properties of the aryl substituent and the nature of the zeolite charge-balancing cations. The results strongly suggest that two opposing mechanisms for capture of the carbene can occur depending on whether the zeolite framework behaves as a nucleophilic reagent or an electrophilic reagent in its reaction with the carbene center. Hammett relationships for the decay of the carbene as a function of aryl substituent and zeolite counterion versus the sigma+ substituent parameter support a change in mechanism as the carbene center toggles between being electron poor and electron rich. For the electron-poor chloro(4-nitrophenyl)carbene, a framework adduct is proposed upon reaction of the nucleophilic [Si-O-Al]- bridge with the carbene center, and for the electron-rich chloro(4-methoxyphenyl)carbene, an adduct with the tight Li+ cation is proposed.

6.
Photochem Photobiol ; 82(1): 132-8, 2006.
Article in English | MEDLINE | ID: mdl-16238452

ABSTRACT

Pyrene has been a favorite photophysical probe molecule for zeolite research because of its ability to exhibit both monomer and excimer emission upon excitation. This study combines the use of ultrafast time-resolved fluorescence spectroscopy with steady-state fluorescence spectroscopy to study the excimer emission of pyrene incorporated within zeolites LiY, NaY, KY and NaX. The effects of sealing technique and coincorporated solvents are also explored. Pyrene excimer emission is resolvable with the use of an ultrafast streak camera under all conditions examined in this study with a rise-time range of 6.8 to 16.0 picoseconds. For each zeolite sample the addition of cosolvents decreases the rise time, with a greater decrease for polar solvents than for a nonpolar solvent. The presence of a detectable rise time for excimer emission indicates that pyrene excimer formation is a dynamic process when pyrene is embedded within the cavities of zeolite host materials.

7.
J Am Chem Soc ; 127(19): 7065-70, 2005 May 18.
Article in English | MEDLINE | ID: mdl-15884949

ABSTRACT

The picosecond excited-state dynamics of several derivatives have been investigated using high photon energy excitation combined with picosecond luminescence detection. Instrument response-limited fluorescence (tau(1) approximately equal to 3-5 ps) at 500 nm was observed for all of the complexes, while longer-lived emission (tau(2) > 50 ps), similar in energy, was observed for only some of the complexes. Interestingly, the presence of tau(2) required substitution at the 4,4-positions of the bipyridine ligands and D(3) symmetry for the complex; only the 4,4-substituted homoleptic complexes exhibited tau(2). On the basis of previous assignments of the ultrafast dynamics measured for Ru(bpy)(2+)3 and Ru(dmb)(2+)3, tau(2) has been tentatively ascribed to relaxation from higher electronic or vibrational levels in the triplet manifold having slightly more triplet character than the state responsible for tau(1). However, given that the kinetics for these transition metal complexes are highly dependent on both pump and probe wavelengths and that there is considerable interest in utilizing such complexes for electron transfer in the nonergodic limit, further characterization of the state giving rise to tau(2) is warranted.

8.
Org Lett ; 6(6): 881-4, 2004 Mar 18.
Article in English | MEDLINE | ID: mdl-15012055

ABSTRACT

[reaction: see text] Herein we report the first direct observation of reactive carbenes within the cavities of cation-exchanged Y zeolites. Chloro(phenyl)- and bromo(phenyl)carbenes were generated upon laser photolysis of 3-halo-3-phenyldiazirines incorporated within dry zeolites and the absolute reactivity of the carbenes was investigated as a function of counterbalancing cation and coincorporated quenchers in order to elucidate the behavior of these intermediates within zeolites. Product analysis performed upon thermolysis of the diazirine in Y zeolites yielded products that were identified as those derived from the carbene.

9.
J Am Chem Soc ; 126(4): 1012-3, 2004 Feb 04.
Article in English | MEDLINE | ID: mdl-14746456

ABSTRACT

Absolute rate constants for the ionization of chloride from the 2-chloro-1-(4-methoxyphenyl)ethyl radical are measured in aqueous methanol and in alkali-metal cation zeolites as a function of temperature. The absolute rate constants are very fast in the two distinct media. However, the activation parameters are considerably different. In solution, the reaction proceeds with low enthalpies of activation and large, negative entropies of activation, while in zeolites, the reaction is characterized by significantly higher activation enthalpies and large, positive entropies of activation. These differences reveal that the fundamental factors allowing for such rapid reactions are not the same in the two media.

10.
Org Biomol Chem ; 1(11): 1972-9, 2003 Jun 07.
Article in English | MEDLINE | ID: mdl-12945782

ABSTRACT

A series of beta-methanesulfonate phenethyl radicals bearing a range of electron donating and withdrawing aromatic substituents were generated and studied in a variety of solvent mixtures using nanosecond laser flash photolysis. Rate constants for the formation of the corresponding styrene radical cation via heterolytic loss of the beta-mesylate leaving group were measured using time-resolved absorption spectroscopy. The ionization reaction was investigated in a variety of solvents and solvent mixtures including 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,2-trifluoroethanol, acetonitrile, methanol and water. The influence of substituent electronic effect and solvent polarity on the kinetics of the beta-heterolysis reaction are discussed and assessed using the sigma+ Hammett parameter and Y(OMs) values, respectively. The small magnitude of m calculated for the formation of the 4-methoxystyrene radical cation by ionization of the mesylate group (m = 0.33) in aqueous methanol mixtures is compared to values obtained for the formation of the same radical cation via loss of chloride and bromide where m = 0.56 and m = 0.45, respectively.


Subject(s)
Benzene Derivatives/chemistry , Mesylates/chemistry , Cations , Free Radicals/chemistry , Kinetics , Lasers , Photolysis , Solvents/chemistry , Spectrophotometry/methods , Styrene/chemistry
12.
J Org Chem ; 62(21): 7121-7127, 1997 Oct 17.
Article in English | MEDLINE | ID: mdl-11671815

ABSTRACT

A series of four symmetrical squaraines (ditoylyl, di-m-xylyl, dianisyl, and diresorcinyl) incorporated inside zeolites Y, mordenite, and ZSM-5 have been obtained by treating squaric acid and the corresponding arene in the presence of acid zeolites. Acid sites and high reaction temperatures (150 degrees C) were found to be crucial for the success of the preparation procedure. Surprisingly, this method failed for the preparation of the squaraine derived from N,N-dimethylaniline, which is known to be readily formed from squaric acid in homogeneous phase without a catalyst. The solid samples containing squaraines were characterized by diffuse reflectance and Raman spectroscopies and by thermogravimetry-differential scanning calorimetry. Among the hosts, mordenite was found to be the most general and convenient zeolite for the preparation of the squaraines, while in the other solids either the organic content adsorbed was comparatively smaller (ZSM-5) or some squaraines were not very stable (Y zeolite for ditolyl and dixylyl squaraines). The absorption spectra of the samples correspond to the J-aggregation state of the squaraines, except for some ZSM-5 samples, where simultaneous observation of the bands due to both monomers and aggregates occurs. Aggregation also changes with the water content of the samples. Treatment of the zeolite-bound diresorcinyl squaraine with basic aqueous solutions leads to remarkable variations in the diffuse reflectance and Raman spectra. These changes in the Raman spectrum of the diresorcinyl squaraine were found to be reversible by basic or acid washings. Laser flash photolysis using the 355- or 532-nm output of a Nd-YAG laser (<10 ns pulses;

SELECTION OF CITATIONS
SEARCH DETAIL
...