Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 6905, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824279

ABSTRACT

Although 90% of children with acute lymphoblastic leukemia (ALL) are now cured, the prognosis for infant-ALL remains dismal. Infant-ALL is usually caused by a single genetic hit that arises in utero: an MLL/KMT2A gene rearrangement (MLL-r). This is sufficient to induce a uniquely aggressive and treatment-refractory leukemia compared to older children. The reasons for disparate outcomes in patients of different ages with identical driver mutations are unknown. Using the most common MLL-r in infant-ALL, MLL-AF4, as a disease model, we show that fetal-specific gene expression programs are maintained in MLL-AF4 infant-ALL but not in MLL-AF4 childhood-ALL. We use CRISPR-Cas9 gene editing of primary human fetal liver hematopoietic cells to produce a t(4;11)/MLL-AF4 translocation, which replicates the clinical features of infant-ALL and drives infant-ALL-specific and fetal-specific gene expression programs. These data support the hypothesis that fetal-specific gene expression programs cooperate with MLL-AF4 to initiate and maintain the distinct biology of infant-ALL.


Subject(s)
Fetus , Gene Expression Regulation, Neoplastic , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Animals , CRISPR-Cas Systems , DNA-Binding Proteins , Female , Gene Editing , Histone-Lysine N-Methyltransferase , Humans , Liver , Mice , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcriptional Elongation Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...