Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Syst Neurosci ; 12: 41, 2018.
Article in English | MEDLINE | ID: mdl-30405364

ABSTRACT

The activity of the GABAergic neurons of the thalamic reticular nucleus (TRN) has long been known to play important roles in modulating the flow of information through the thalamus and in generating changes in thalamic activity during transitions from wakefulness to sleep. Recently, technological advances have considerably expanded our understanding of the functional organization of TRN. These have identified an impressive array of functionally distinct subnetworks in TRN that participate in sensory, motor, and/or cognitive processes through their different functional connections with thalamic projection neurons. Accordingly, "first order" projection neurons receive "driver" inputs from subcortical sources and are usually connected to a densely distributed TRN subnetwork composed of multiple elongated neural clusters that are topographically organized and incorporate spatially corresponding electrically connected neurons-first order projection neurons are also connected to TRN subnetworks exhibiting different state-dependent activity profiles. "Higher order" projection neurons receive driver inputs from cortical layer 5 and are mainly connected to a densely distributed TRN subnetwork composed of multiple broad neural clusters that are non-topographically organized and incorporate spatially corresponding electrically connected neurons. And projection neurons receiving "driver-like" inputs from the superior colliculus or basal ganglia are connected to TRN subnetworks composed of either elongated or broad neural clusters. Furthermore, TRN subnetworks that mediate interactions among neurons within groups of thalamic nuclei are connected to all three types of thalamic projection neurons. In addition, several TRN subnetworks mediate various bottom-up, top-down, and internuclear attentional processes: some bottom-up and top-down attentional mechanisms are specifically related to first order projection neurons whereas internuclear attentional mechanisms engage all three types of projection neurons. The TRN subnetworks formed by elongated and broad neural clusters may act as templates to guide the operations of the TRN subnetworks related to attentional processes. In this review article, the evidence revealing the functional TRN subnetworks will be evaluated and will be discussed in relation to the functions of the various sensory and motor thalamic nuclei with which these subnetworks are connected.

2.
Eur J Neurosci ; 37(6): 850-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23294136

ABSTRACT

Traditionally, neurotransmitters are associated with a fast, or phasic, type of action on neurons in the central nervous system (CNS). However, accumulating evidence indicates that γ-aminobutyric acid (GABA) and glutamate can also have a continual, or tonic, influence on these cells. Here, in voltage- and current-clamp recordings in rat brain slices, we identify three types of tonically active receptors in a single CNS structure, the thalamic reticular nucleus (TRN). Thus, TRN contains constitutively active GABAA receptors (GABAA Rs), which are located on TRN neurons and generate a persistent outward Cl(-) current. When TRN neurons are depolarized, blockade of this current increases their action potential output in response to current injection. Furthermore, TRN contains tonically active GluN2B-containing N-methyl-D-aspartate receptors (NMDARs). These are located on reticuloreticular GABAergic terminals in TRN and generate a persistent facilitation of vesicular GABA release from these terminals. In addition, TRN contains tonically active metabotropic glutamate type 2 receptors (mGlu2Rs). These are located on glutamatergic cortical terminals in TRN and generate a persistent reduction of vesicular glutamate release from these terminals. Although tonically active GABAA Rs, NMDARs and mGlu2Rs operate through different mechanisms, we propose that the continual and combined activity of these three receptor types ultimately serves to hyperpolarize TRN neurons, which will differentially affect the output of these cells depending upon the current state of their membrane potential. Thus, when TRN cells are relatively depolarized, their firing in single-spike tonic mode will be reduced, whereas when these cells are relatively hyperpolarized, their ability to fire in multispike burst mode will be facilitated.


Subject(s)
Action Potentials , Intralaminar Thalamic Nuclei/physiology , Receptors, GABA-A/metabolism , Receptors, Metabotropic Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Chlorides/metabolism , Glutamic Acid/metabolism , Intralaminar Thalamic Nuclei/metabolism , Neurons/metabolism , Neurons/physiology , Presynaptic Terminals/metabolism , Presynaptic Terminals/physiology , Rats , Rats, Wistar , Secretory Pathway , Synaptic Vesicles/metabolism , Synaptic Vesicles/physiology , gamma-Aminobutyric Acid/metabolism
3.
Eur J Neurosci ; 27(10): 2643-56, 2008 May.
Article in English | MEDLINE | ID: mdl-18547248

ABSTRACT

Transmission through the thalamus activates circuits involving the GABAergic neurons of the thalamic reticular nucleus (TRN). TRN cells receive excitatory inputs from thalamocortical and corticothalamic cells and send inhibitory projections to thalamocortical cells. The inhibitory output of TRN neurons largely depends on the level of excitatory drive to these cells but may also be partly under the control of mechanisms intrinsic to the TRN. We examined two such possible mechanisms, short-term plasticity at glutamatergic synapses in the TRN and intra-TRN inhibition. In rat brain slices, responses of TRN neurons to brief trains of stimuli applied to glutamatergic inputs were recorded in voltage- or current-clamp mode. In voltage clamp, TRN cells showed no change in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated excitatory postsynaptic current amplitudes to stimulation at non-gamma frequencies (< 30 Hz), simulating background activity, but exhibited short-term depression in these amplitudes to stimulation at gamma frequencies (> 30 Hz), simulating sensory transmission. In current clamp, TRN cells increased their spike outputs in burst and tonic firing modes to increasing stimulus-train frequencies. These increases in spike output were most likely due to temporal summation of excitatory postsynaptic potentials. However, the frequency-dependent increase in tonic firing was attenuated at gamma stimulus frequencies, indicating that the synaptic depression selectively observed in this frequency range acts to suppress TRN cell output. In contrast, intra-TRN inhibition reduced spike output selectively at non-gamma stimulus frequencies. Thus, our data indicate that two intrinsic mechanisms play a role in controlling the tonic spike output of TRN neurons and these mechanisms are differentially related to two physiologically meaningful stimulus frequency ranges.


Subject(s)
Action Potentials/physiology , Intralaminar Thalamic Nuclei/physiology , Neurons/physiology , Animals , Animals, Newborn , Axons/physiology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Glutamic Acid/metabolism , Intralaminar Thalamic Nuclei/cytology , Neural Inhibition/drug effects , Neural Inhibition/physiology , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Organ Culture Techniques , Patch-Clamp Techniques , Rats , Rats, Wistar , Receptors, AMPA/metabolism , Synaptic Transmission/physiology
4.
J Neurosci ; 25(21): 5259-71, 2005 May 25.
Article in English | MEDLINE | ID: mdl-15917466

ABSTRACT

During the first week of life, there is a shift from kainate to AMPA receptor-mediated thalamocortical transmission in layer IV barrel cortex. However, the mechanisms underlying this change and the differential properties of AMPA and kainate receptor-mediated transmission remain essentially unexplored. To investigate this, we studied the quantal properties of AMPA and kainate receptor-mediated transmission using strontium-evoked miniature EPSCs. AMPA and kainate receptor-mediated transmission exhibited very different quantal properties but were never coactivated by a single quantum of transmitter, indicating complete segregation to different synapses within the thalamocortical input. Nonstationary fluctuation analysis showed that synaptic AMPA receptors exhibited a range of single-channel conductance (gamma) and a strong negative correlation between gamma and functional channel number, indicating that these two parameters are reciprocally regulated at thalamocortical synapses. We obtained the first estimate of gamma for synaptic kainate receptors (<2 pS), and this primarily accounted for the small quantal size of kainate receptor-mediated transmission. Developmentally, the quantal contribution to transmission of AMPA receptors increased and that of kainate receptors decreased. No changes in AMPA or kainate quantal amplitude or in AMPA receptor gamma were observed, demonstrating that the developmental change was attributable to a decrease in the number of kainate synapses and an increase in the number of AMPA synapses contributing to transmission. Therefore, we demonstrate fundamental differences in the quantal properties for these two types of synapse. Thus, the developmental switch in transmission will dramatically alter information transfer at thalamocortical inputs to layer IV.


Subject(s)
Cerebral Cortex/cytology , Receptors, AMPA/physiology , Receptors, Kainic Acid/physiology , Synapses/physiology , Synaptic Transmission/physiology , Thalamus/cytology , Animals , Animals, Newborn , Aspartic Acid/pharmacology , Calcium/pharmacology , Cerebral Cortex/growth & development , Chelating Agents/pharmacology , Dose-Response Relationship, Radiation , Drug Interactions , Egtazic Acid/pharmacology , Electric Stimulation/methods , Excitatory Amino Acid Agonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/radiation effects , In Vitro Techniques , Kainic Acid/pharmacology , Mice , Models, Neurological , Monte Carlo Method , Neural Conduction/drug effects , Neural Conduction/physiology , Neural Conduction/radiation effects , Neural Pathways/drug effects , Neural Pathways/physiology , Neurons/cytology , Patch-Clamp Techniques/methods , Strontium/pharmacology , Thalamus/growth & development , Time Factors , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
5.
J Neurosci ; 22(19): 8754-61, 2002 Oct 01.
Article in English | MEDLINE | ID: mdl-12351751

ABSTRACT

Transmission through the dorsal thalamus involves nuclei that convey different aspects of sensory or motor information. Cells in the dorsal thalamus are strongly inhibited by the GABAergic cells of the thalamic reticular nucleus (TRN). Here we show that stimulation of cells in specific dorsal thalamic nuclei evokes robust IPSCs or IPSPs in other specific dorsal thalamic nuclei and vice versa. These IPSCs are GABA(A) receptor-mediated currents and are consistent with the activation of disynaptic intrathalamic pathways mediated by TRN. Thus, cells engaged in sensory analyses in the ventrobasal complex or the medial division of the posterior complex can interact with cells responsive to sensory events in the caudal intralaminar nuclei, whereas cells engaged in motor analyses in the ventrolateral nucleus can interact with cells responsive to motor events in the rostral intralaminar nuclei. Furthermore, sensory event-related cells in the caudal intralaminar nuclei can interact with motor event-related cells in the rostral intralaminar nuclei. In addition, single cells in one dorsal thalamic nucleus can receive convergent inhibitory inputs after stimulation of cells in two or more other dorsal thalamic nuclei, and TRN-mediated inhibitory inputs can momentarily switch off tonic firing of action potentials in dorsal thalamic cells. Our findings provide the first direct evidence for a rich network of intrathalamic pathways that allows modality-related and cross-modality inhibitory modulation between dorsal thalamic nuclei. Moreover, TRN-mediated switching between dorsal thalamic nuclei could provide a mechanism for the selection of competing transmissions of sensory and/or motor information through the dorsal thalamus.


Subject(s)
Lysine/analogs & derivatives , Nerve Net/physiology , Neural Pathways/physiology , Synaptic Transmission/physiology , Thalamus/physiology , Action Potentials/physiology , Animals , Attention/physiology , Glutamic Acid/administration & dosage , In Vitro Techniques , Nerve Net/drug effects , Neural Inhibition/physiology , Neural Pathways/anatomy & histology , Neurons/drug effects , Neurons/physiology , Patch-Clamp Techniques , Rats , Rats, Wistar , Receptors, GABA-A/metabolism , Stimulation, Chemical , Synaptic Transmission/drug effects , Thalamic Nuclei/anatomy & histology , Thalamic Nuclei/physiology , Thalamus/anatomy & histology , Thalamus/drug effects
6.
Neuron ; 34(4): 635-46, 2002 May 16.
Article in English | MEDLINE | ID: mdl-12062046

ABSTRACT

Previous studies have shown that pharmacological activation of presynaptic kainate receptors at glutamatergic synapses facilitates or depresses transmission in a dose-dependent manner. However, the only synaptically activated kainate autoreceptor described to date is facilitatory. Here, we describe a kainate autoreceptor that depresses synaptic transmission. This autoreceptor is present at developing thalamocortical synapses in the barrel cortex, specifically regulates transmission at frequencies corresponding to those observed in vivo during whisker activation, and is developmentally down regulated during the first postnatal week. This receptor may, therefore, limit the transfer of high-frequency activity to the developing cortex, the loss of which mechanism may be important for the maturation of sensory processing.


Subject(s)
Autoreceptors/metabolism , Cell Differentiation/physiology , Neural Pathways/growth & development , Presynaptic Terminals/metabolism , Receptors, Kainic Acid/metabolism , Somatosensory Cortex/growth & development , Synaptic Transmission/physiology , Ventral Thalamic Nuclei/growth & development , Animals , Animals, Newborn , Autoreceptors/drug effects , Body Temperature/physiology , Cell Differentiation/drug effects , Electric Stimulation , Excitatory Amino Acid Agonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Gene Expression Regulation, Developmental/physiology , Mechanoreceptors/growth & development , Mechanoreceptors/physiology , Models, Neurological , Neural Inhibition/drug effects , Neural Inhibition/physiology , Neural Pathways/cytology , Neural Pathways/metabolism , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Presynaptic Terminals/drug effects , Rats , Receptors, Kainic Acid/drug effects , Somatosensory Cortex/cytology , Somatosensory Cortex/metabolism , Synaptic Transmission/drug effects , Ventral Thalamic Nuclei/cytology , Ventral Thalamic Nuclei/metabolism , Vibrissae/growth & development , Vibrissae/physiology
7.
Eur J Neurosci ; 4(12): 1343-1351, 1992.
Article in English | MEDLINE | ID: mdl-12106397

ABSTRACT

The organization of the somatosensory representation within the rabbit's thalamic reticular nucleus (TRN) was studied. Focal injections of horseradish peroxidase (HRP), wheatgerm agglutinin conjugated to HRP, or [3H]proline were made into somatosensory cortical area 1 (S1). The resultant labelling in the thalamus was analysed. Single injections into S1 result in single zones of terminal labelling in TRN that are restricted to the centroventral part of the sheet-like nucleus. In reconstructions from horizontal sections these zones of labelling resemble 'slabs', which lie in the plane of the nucleus parallel to its borders, occupy only a fraction of the thickness of the reticular sheet, and are elongated in the dorsoventral and oblique rostrocaudal dimensions. Thus, the slabs of S1 terminals, which represent various loci of the body surface, and the main distribution of the reticular dendrites have a similar orientation. In comparisons of the zones of labelling following single or double injections at different cortical sites in S1, an inner (medial) to outer (lateral) shift in labelling in the ventrobasal complex (VB) is accompanied by an inner (medial) to outer (lateral) shift in labelling along the thickness of the reticular sheet; a rostral to caudal shift in labelling in VB is accompanied by a rostral to caudal shift in labelling along the plane of the reticular sheet. Thus, like VB, the reticular nucleus receives a topographically accurate projection from S1. Further, the somatotopic map conveyed from S1 to TRN lies perpendicular to the plane of the nucleus and repeats the spatial organization of the map in VB. These findings, together with those for the visual sector of the rabbit's TRN, indicate that the representation of the cortical sheet is broken up into significant parcels at the inner and outer borders of the reticular sheet.

8.
Eur J Neurosci ; 4(12): 1352-1361, 1992.
Article in English | MEDLINE | ID: mdl-12106398

ABSTRACT

The organization of the somatosensory representation within the cat's thalamic reticular nucleus (TRN) was studied. Focal injections of horseradish peroxidase (HRP), wheatgerm agglutinin conjugated to HRP, and/or [3H]proline were made into somatosensory cortical areas 1 (S1) and 2 (S2). The resultant labelling in the thalamus was analysed. Single injections into S1 result in single zones of terminal labelling in TRN that are restricted to the centroventral part of the sheet-like nucleus. In reconstructions from horizontal sections these zones of labelling resemble thin 'slabs', which lie in the plane of the nucleus parallel to its borders, occupy only a fraction of the thickness of the reticular sheet, and are broadly elongated in the dorsoventral and oblique rostrocaudal dimensions. Thus, the slabs of S1 terminals, which represent large loci of the body surface, and the main distribution of the reticular dendrites have a similar orientation. In comparisons of the zones of labelling following single or double injections at different cortical sites in S1, an inner (medial) to outer (lateral) shift in labelling in the ventrobasal complex (VB) is accompanied by an inner (medial) to outer (lateral) shift in labelling along the thickness of the reticular sheet. Thus, like VB the reticular nucleus receives a topographically accurate projection from S1. Further, the somatotopic map conveyed from S1 to TRN is orientated perpendicular to the plane of the nucleus and repeats the spatial organization of the map in VB. S2 injections result in zones of terminal labelling in that part of TRN that receives S1 inputs. On the basis of these findings, together with those in other mammalian species, two conclusions can be reached about corticoreticular relations. First, although there can be continuity in individual maps of cortical inputs to TRN, there are discontinuities in cortical representations at the inner and outer borders of the reticular sheet. Second, TRN can receive a significant convergence of inputs from different cortical areas.

9.
Eur J Neurosci ; 1(1): 94-109, 1989 Jan.
Article in English | MEDLINE | ID: mdl-12106177

ABSTRACT

The organization of the visual field representation within the thalamic reticular nucleus (TRN) of the rabbit was studied. Focal injections of horseradish peroxidase (HRP) and/or [3H]proline were made into visuocortical areas V1 and V2 and the dorsal lateral geniculate nucleus (dLGN). The resultant labelling in the thalamus was analysed. A single injection in V1 or V2 results in a single zone of terminal label within the TRN that is restricted to the dorsocaudal part of the sheet-like nucleus. In comparisons of the zones of label following injections at two different cortical sites in V1, a medial to lateral shift in label across the thickness of the TRN sheet is accompanied by a medial to lateral shift in label in the dLGN; a dorsal to ventral shift in label within the plane of the TRN sheet is accompanied by a dorsal to ventral shift in label in the dLGN. Thus, like the dLGN the TRN receives a precise topographic projection from V1. In reconstructions from horizontal sections the zones of label within the TRN resemble 'slabs', which lie within the plane of the nucleus parallel to its borders. Thus, the slabs of visuocortical terminals and reticular dendrites are similarly oriented. As revealed by the orientation of the slabs, the lines of projection representing points in visual space are represented by the oblique rostrocaudal dimension of the TRN. Injections restricted to V1 produce terminal labelling that is confined to the outer two-thirds of the TRN across its thickness, whilst those involving V2 result in terminal labelling within the inner one-third of the nucleus. Thus, the adjacent cortical areas V1 and V2 project in a continuous fashion across the mediolateral dimension of the TRN. The organization of the map within the TRN, which was revealed by visuocortical injections, was confirmed by the pattern of retrograde labelling within the nucleus following geniculate injections of HRP. On the basis of these findings and those in other mammalian species, two major conclusions can be reached that alter our view of the TRN. First, rather than mapping onto the whole nucleus in a continuous fashion, the cortical projection to the TRN has significant discontinuities. Second, rather than integrating efferents from widespread cortical areas, the reticular dendrites are related to focal areas of cortex.

SELECTION OF CITATIONS
SEARCH DETAIL
...