Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 333: 122020, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37336345

ABSTRACT

This longitudinal study tests correlations between antimicrobial agents (AA) and corresponding antimicrobial resistance genes (ARGs) generated by a community of >100 k people inhabiting one city (Bath) over a 13 month randomised monitoring programme of community wastewater. Several AAs experienced seasonal fluctuations, such as the macrolides erythromycin and clarithromycin that were found in higher loads in winter, whilst other AA levels, including sulfamethoxazole and sulfapyridine, stayed consistent over the study period. Interestingly, and as opposed to AAs, ARGs prevalence was found to be less variable, which indicates that fluctuations in AA usage might either not directly affect ARG levels or this process spans beyond the 13-month monitoring period. However, it is important to note that weekly positive correlations between individual associated AAs and ARGs were observed where seasonal variability in AA use was reported: ermB and macrolides CLR-clarithromycin and dmCLR-N-desmethyl clarithromycin, aSPY- N-acetyl sulfapyridine and sul1, and OFX-ofloxacin and qnrS. Furthermore, ARG loads normalised to 16S rRNA (gene load per microorganism) were positively correlated to the ARG loads normalised to the human population (gene load per capita), which indicates that the abundance of microorganisms is proportional to the size of human population and that the community size, and not AA levels, is a major driver of ARG levels in wastewater. Comparison of hospital and community wastewater showed higher number of AAs and their metabolites, their frequency of occurrence and concentrations in hospital wastewater. Examples include: LZD-linezolid (used only in severe bacterial infections) and AMX-amoxicillin (widely used, also in community but with very low wastewater stability) that were found only in hospital wastewater. CIP-ciprofloxacin, SMX-sulfamethoxazole, TMP-trimethoprim, MTZ-metronidazole and macrolides were found at much higher concentrations in hospital wastewater while TET-tetracycline and OTC-oxytetracycline, as well as antiretrovirals, had an opposite trend. In contrast, comparable concentrations of resistant genes were observed in both community and hospital wastewater. This supports the hypothesis that AMR levels are more of an endemic nature, developing over time in individual communities. Both hospital and community wastewater had AAs that exceeded PNEC values (e.g. CLR-clarithromycin, CIP-ciprofloxacin). In general, though, hospital effluents had a greater number of quantifiable AAs exceeding PNECs (e.g. SMX-sulfamethoxazole, ERY-erythromycin, TMP-trimethoprim). Hospitals are therefore an important consideration in AMR surveillance as could be high risk areas for AMR.

2.
Microb Genom ; 7(3)2021 03.
Article in English | MEDLINE | ID: mdl-33416467

ABSTRACT

Klebsiella species occupy a wide range of environmental and animal niches, and occasionally cause opportunistic infections that are resistant to multiple antibiotics. In particular, Klebsiella pneumoniae (Kpne) has gained notoriety as a major nosocomial pathogen, due principally to the rise in non-susceptibility to carbapenems and other beta-lactam antibiotics. Whilst it has been proposed that the urban water cycle facilitates transmission of pathogens between clinical settings and the environment, the level of risk posed by resistant Klebsiella strains in hospital wastewater remains unclear. We used whole genome sequencing (WGS) to compare Klebsiella species in contemporaneous samples of wastewater from an English hospital and influent to the associated wastewater treatment plant (WWTP). As we aimed to characterize representative samples of Klebsiella communities, we did not actively select for antibiotic resistance (other than for ampicillin), nor for specific Klebsiella species. Two species, Kpne and K. (Raoultella) ornithinolytica (Korn), were of equal dominance in the hospital wastewater, and four other Klebsiella species were present in low abundance in this sample. In contrast, despite being the species most closely associated with healthcare settings, Kpne was the dominant species within the WWTP influent. In total, 29 % of all isolates harboured the blaOXA-48 gene on a pOXA-48-like plasmid, and these isolates were almost exclusively recovered from the hospital wastewater. This gene was far more common in Korn (68 % of isolates) than in Kpne (3.4 % of isolates). In general plasmid-borne, but not chromosomal, resistance genes were significantly enriched in the hospital wastewater sample. These data implicate hospital wastewater as an important reservoir for antibiotic-resistant Klebsiella, and point to an unsuspected role of species within the Raoultella group in the maintenance and dissemination of plasmid-borne blaOXA-48. This article contains data hosted by Microreact.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Enterobacteriaceae/enzymology , Enterobacteriaceae/isolation & purification , Wastewater/microbiology , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Drug Resistance, Bacterial , England , Enterobacteriaceae/classification , Enterobacteriaceae/drug effects , Humans , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/isolation & purification , Microbial Sensitivity Tests , Prevalence , Water Purification , beta-Lactamases/genetics
3.
Philos Trans A Math Phys Eng Sci ; 370(1974): 4217-62, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22869798

ABSTRACT

The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

SELECTION OF CITATIONS
SEARCH DETAIL
...