Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 563, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740899

ABSTRACT

Targeting the estrogen receptor alpha (ERα) pathway is validated in the clinic as an effective means to treat ER+ breast cancers. Here we present the development of a VHL-targeting and orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of ERα. In vitro studies with this PROTAC demonstrate excellent ERα degradation and ER antagonism in ER+ breast cancer cell lines. However, upon dosing the compound in vivo we observe an in vitro-in vivo disconnect. ERα degradation is lower in vivo than expected based on the in vitro data. Investigation into potential causes for the reduced maximal degradation reveals that metabolic instability of the PROTAC linker generates metabolites that compete for binding to ERα with the full PROTAC, limiting degradation. This observation highlights the requirement for metabolically stable PROTACs to ensure maximal efficacy and thus optimisation of the linker should be a key consideration when designing PROTACs.


Subject(s)
Estrogen Receptor alpha , Proteolysis , Von Hippel-Lindau Tumor Suppressor Protein , Humans , Estrogen Receptor alpha/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Female , Proteolysis/drug effects , Animals , Administration, Oral , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage
2.
Cancer Discov ; 14(5): 846-865, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38456804

ABSTRACT

Oncology drug combinations can improve therapeutic responses and increase treatment options for patients. The number of possible combinations is vast and responses can be context-specific. Systematic screens can identify clinically relevant, actionable combinations in defined patient subtypes. We present data for 109 anticancer drug combinations from AstraZeneca's oncology small molecule portfolio screened in 755 pan-cancer cell lines. Combinations were screened in a 7 × 7 concentration matrix, with more than 4 million measurements of sensitivity, producing an exceptionally data-rich resource. We implement a new approach using combination Emax (viability effect) and highest single agent (HSA) to assess combination benefit. We designed a clinical translatability workflow to identify combinations with clearly defined patient populations, rationale for tolerability based on tumor type and combination-specific "emergent" biomarkers, and exposures relevant to clinical doses. We describe three actionable combinations in defined cancer types, confirmed in vitro and in vivo, with a focus on hematologic cancers and apoptotic targets. SIGNIFICANCE: We present the largest cancer drug combination screen published to date with 7 × 7 concentration response matrices for 109 combinations in more than 750 cell lines, complemented by multi-omics predictors of response and identification of "emergent" combination biomarkers. We prioritize hits to optimize clinical translatability, and experimentally validate novel combination hypotheses. This article is featured in Selected Articles from This Issue, p. 695.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Neoplasms , Humans , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Screening Assays, Antitumor/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
3.
Sci Signal ; 17(825): eadf2670, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38412255

ABSTRACT

More than 50% of human tumors display hyperactivation of the serine/threonine kinase AKT. Despite evidence of clinical efficacy, the therapeutic window of the current generation of AKT inhibitors could be improved. Here, we report the development of a second-generation AKT degrader, INY-05-040, which outperformed catalytic AKT inhibition with respect to cellular suppression of AKT-dependent phenotypes in breast cancer cell lines. A growth inhibition screen with 288 cancer cell lines confirmed that INY-05-040 had a substantially higher potency than our first-generation AKT degrader (INY-03-041), with both compounds outperforming catalytic AKT inhibition by GDC-0068. Using multiomic profiling and causal network integration in breast cancer cells, we demonstrated that the enhanced efficacy of INY-05-040 was associated with sustained suppression of AKT signaling, which was followed by induction of the stress mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). Further integration of growth inhibition assays with publicly available transcriptomic, proteomic, and reverse phase protein array (RPPA) measurements established low basal JNK signaling as a biomarker for breast cancer sensitivity to AKT degradation. Together, our study presents a framework for mapping the network-wide signaling effects of therapeutically relevant compounds and identifies INY-05-040 as a potent pharmacological suppressor of AKT signaling.


Subject(s)
Breast Neoplasms , Mitogen-Activated Protein Kinases , Humans , Female , Proto-Oncogene Proteins c-akt/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Apoptosis , Mitogens , Multiomics , Proteomics , p38 Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases , JNK Mitogen-Activated Protein Kinases
4.
J Biol Chem ; 298(6): 101916, 2022 06.
Article in English | MEDLINE | ID: mdl-35429500

ABSTRACT

Activated Cdc42-associated kinase (ACK) is an oncogenic nonreceptor tyrosine kinase associated with poor prognosis in several human cancers. ACK promotes proliferation, in part by contributing to the activation of Akt, the major effector of class 1A phosphoinositide 3-kinases (PI3Ks), which transduce signals via membrane phosphoinositol lipids. We now show that ACK also interacts with other key components of class 1A PI3K signaling, the PI3K regulatory subunits. We demonstrate ACK binds to all five PI3K regulatory subunit isoforms and directly phosphorylates p85α, p85ß, p50α, and p55α on Tyr607 (or analogous residues). We found that phosphorylation of p85ß promotes cell proliferation in HEK293T cells. We demonstrate that ACK interacts with p85α exclusively in nuclear-enriched cell fractions, where p85α phosphorylated at Tyr607 (pTyr607) also resides, and identify an interaction between pTyr607 and the N-terminal SH2 domain that supports dimerization of the regulatory subunits. We infer from this that ACK targets p110-independent p85 and further postulate that these regulatory subunit dimers undertake novel nuclear functions underpinning ACK activity. We conclude that these dimers represent a previously undescribed mode of regulation for the class1A PI3K regulatory subunits and potentially reveal additional avenues for therapeutic intervention.


Subject(s)
Phosphatidylinositol 3-Kinases , Protein-Tyrosine Kinases , Cell Nucleus/enzymology , HEK293 Cells , Humans , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Multimerization , Protein-Tyrosine Kinases/metabolism , Signal Transduction
5.
J Med Chem ; 63(18): 10460-10473, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32803978

ABSTRACT

We report the first disclosure of IRAK3 degraders in the scientific literature. Taking advantage of an opportune byproduct obtained during our efforts to identify IRAK4 inhibitors, we identified ready-to-use, selective IRAK3 ligands in our compound collection with the required properties for conversion into proteolysis-targeting chimera (PROTAC) degraders. This work culminated with the discovery of PROTAC 23, which we demonstrated to be a potent and selective degrader of IRAK3 after 16 h in THP1 cells. 23 induced proteasome-dependent degradation of IRAK3 and required both CRBN and IRAK3 binding for activity. We conclude that PROTAC 23 constitutes an excellent in vitro tool with which to interrogate the biology of IRAK3.


Subject(s)
Interleukin-1 Receptor-Associated Kinases/metabolism , Phthalimides/pharmacology , Proteolysis/drug effects , Pyrroles/pharmacology , Triazines/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Humans , Ligands , Phthalimides/chemical synthesis , Pyrroles/chemical synthesis , THP-1 Cells , Triazines/chemical synthesis , Ubiquitin-Protein Ligases/metabolism
6.
Mol Syst Biol ; 16(7): e9405, 2020 07.
Article in English | MEDLINE | ID: mdl-32627965

ABSTRACT

Low success rates during drug development are due, in part, to the difficulty of defining drug mechanism-of-action and molecular markers of therapeutic activity. Here, we integrated 199,219 drug sensitivity measurements for 397 unique anti-cancer drugs with genome-wide CRISPR loss-of-function screens in 484 cell lines to systematically investigate cellular drug mechanism-of-action. We observed an enrichment for positive associations between the profile of drug sensitivity and knockout of a drug's nominal target, and by leveraging protein-protein networks, we identified pathways underpinning drug sensitivity. This revealed an unappreciated positive association between mitochondrial E3 ubiquitin-protein ligase MARCH5 dependency and sensitivity to MCL1 inhibitors in breast cancer cell lines. We also estimated drug on-target and off-target activity, informing on specificity, potency and toxicity. Linking drug and gene dependency together with genomic data sets uncovered contexts in which molecular networks when perturbed mediate cancer cell loss-of-fitness and thereby provide independent and orthogonal evidence of biomarkers for drug development. This study illustrates how integrating cell line drug sensitivity with CRISPR loss-of-function screens can elucidate mechanism-of-action to advance drug development.


Subject(s)
Antineoplastic Agents/pharmacology , CRISPR-Cas Systems , Drug Development/methods , Drug Screening Assays, Antitumor/methods , Gene Regulatory Networks/drug effects , Genetic Fitness/drug effects , Protein Interaction Maps/drug effects , Antineoplastic Agents/toxicity , Biomarkers/metabolism , Cell Line, Tumor , Gene Knockout Techniques , Gene Regulatory Networks/genetics , Genetic Fitness/genetics , Genomics , Humans , Linear Models , Membrane Proteins/genetics , Membrane Proteins/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Pharmaceutical Preparations/metabolism , Software , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
Biochem Soc Trans ; 47(6): 1715-1731, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31845724

ABSTRACT

Activated Cdc42-associated kinase or ACK, is a non-receptor tyrosine kinase and an effector protein for the small G protein Cdc42. A substantial body of evidence has accumulated in the past few years heavily implicating ACK as a driver of oncogenic processes. Concomitantly, more is also being revealed regarding the signalling pathways involving ACK and molecular details of its modes of action. Some details are also available regarding the regulatory mechanisms of this kinase, including activation and regulation of its catalytic activity, however, a full understanding of these aspects remains elusive. This review considers the current knowledge base concerning ACK and summarizes efforts and future prospects to target ACK therapeutically in cancer.


Subject(s)
Neoplasms/therapy , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Animals , Biological Transport , Cell Movement , Endocytosis , Enzyme Activation , Epigenesis, Genetic , Humans , Neoplasms/enzymology , Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Trans-Activators/metabolism
8.
ACS Chem Biol ; 14(9): 2024-2034, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31461270

ABSTRACT

SGK3 is a PX domain containing protein kinase activated at endosomes downstream of class 1 and 3 PI3K family members by growth factors and oncogenic mutations. SGK3 plays a key role in mediating resistance of breast cancer cells to class 1 PI3K or Akt inhibitors, by substituting for the loss of Akt activity and restoring proliferative pathways such as mTORC1 signaling. It is therefore critical to develop tools to potently target SGK3 and obstruct its role in inhibitor resistance. Here, we describe the development of SGK3-PROTAC1, a PROTAC conjugate of the 308-R SGK inhibitor with the VH032 VHL binding ligand, targeting SGK3 for degradation.  SGK3-PROTAC1 (0.3 µM) induced 50% degradation of endogenous SGK3 within 2 h, with maximal 80% degradation observed within 8 h, accompanied by a loss of phosphorylation of NDRG1, an SGK3 substrate. SGK3-PROTAC1 did not degrade closely related SGK1 and SGK2 isoforms that are nevertheless engaged and inhibited by 308-R. Proteomic analysis revealed that SGK3 was the only cellular protein whose cellular levels were significantly reduced following treatment with SGK3-PROTAC1. Low doses of SGK3-PROTAC1 (0.1-0.3 µM) restored sensitivity of SGK3 dependent ZR-75-1 and CAMA-1 breast cancer cells to Akt (AZD5363) and PI3K (GDC0941) inhibitors, whereas the cis epimer analogue incapable of binding to the VHL E3 ligase had no impact. SGK3-PROTAC1 suppressed proliferation of ZR-75-1 and CAMA-1 cancer cell lines treated with a PI3K inhibitor (GDC0941) more effectively than could be achieved by a conventional SGK isoform inhibitor (14H). This work underscores the benefit of the PROTAC approach in targeting protein kinase signaling pathways with greater efficacy and selectivity than can be achieved with conventional inhibitors. SGK3-PROTAC1 will be an important reagent to explore the roles of the SGK3 pathway.


Subject(s)
Dipeptides/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Sulfonamides/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Humans , Indazoles/pharmacology , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Proteolysis , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/pharmacology , Pyrroles/pharmacology , Signal Transduction/drug effects , Ubiquitin-Protein Ligases/metabolism
9.
J Immunother Cancer ; 6(1): 158, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30587236

ABSTRACT

PI3K inhibitors with differential selectivity to distinct PI3K isoforms have been tested extensively in clinical trials, largely to target tumor epithelial cells. PI3K signaling also regulates the immune system and inhibition of PI3Kδ modulate the tumor immune microenvironment of pre-clinical mouse tumor models by relieving T-regs-mediated immunosuppression. PI3K inhibitors as a class and PI3Kδ specifically are associated with immune-related side effects. However, the impact of mixed PI3K inhibitors in tumor immunology is under-explored. Here we examine the differential effects of AZD8835, a dual PI3Kα/δ inhibitor, specifically on the tumor immune microenvironment using syngeneic models. Continuous suppression of PI3Kα/δ was not required for anti-tumor activity, as tumor growth inhibition was potentiated by an intermittent dosing/schedule in vivo. Moreover, PI3Kα/δ inhibition delivered strong single agent anti-tumor activity, which was associated with dynamic suppression of T-regs, improved CD8+ T-cell activation and memory in mouse syngeneic tumor models. Strikingly, AZD8835 promoted robust CD8+ T-cell activation dissociated from its effect on T-regs. This was associated with enhancing effector cell viability/function. Together these data reveal novel mechanisms by which PI3Kα/δ inhibitors interact with the immune system and validate the clinical compound AZD8835 as a novel immunoncology drug, independent of effects on tumor cells. These data support further clinical investigation of PI3K pathway inhibitors as immuno-oncology agents.


Subject(s)
Antineoplastic Agents/pharmacology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Immunomodulation/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Interleukin-2/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice , Oxadiazoles/pharmacology , Piperidines/pharmacology , Signal Transduction/drug effects , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Xenograft Model Antitumor Assays
10.
Mol Cancer Ther ; 17(5): 908-920, 2018 05.
Article in English | MEDLINE | ID: mdl-29483206

ABSTRACT

The cyclin dependent kinase (CDK)-retinoblastoma (RB)-E2F pathway plays a critical role in the control of cell cycle in estrogen receptor-positive (ER+) breast cancer. Small-molecule inhibitors of CDK4/6 have shown promise in this tumor type in combination with hormonal therapies, reflecting the particular dependence of this subtype of cancer on cyclin D1 and E2F transcription factors. mTOR inhibitors have also shown potential in clinical trials in this disease setting. Recent data have suggested cooperation between the PI3K/mTOR pathway and CDK4/6 inhibition in preventing early adaptation and eliciting growth arrest, but the mechanisms of the interplay between these pathways have not been fully elucidated. Here we show that profound and durable inhibition of ER+ breast cancer growth is likely to require multiple hits on E2F-mediated transcription. We demonstrate that inhibition of mTORC1/2 does not affect ER function directly, but does cause a decrease in cyclin D1 protein, RB phosphorylation, and E2F-mediated transcription. Combination of an mTORC1/2 inhibitor with a CDK4/6 inhibitor results in more profound effects on E2F-dependent transcription, which translates into more durable growth arrest and a delay in the onset of resistance. Combined inhibition of mTORC1/2, CDK4/6, and ER delivers even more profound and durable regressions in breast cancer cell lines and xenografts. Furthermore, we show that CDK4/6 inhibitor-resistant cell lines reactivate the CDK-RB-E2F pathway, but remain sensitive to mTORC1/2 inhibition, suggesting that mTORC1/2 inhibitors may represent an option for patients that have relapsed on CDK4/6 therapy. Mol Cancer Ther; 17(5); 908-20. ©2018 AACR.


Subject(s)
Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , E2F Transcription Factors/antagonists & inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzamides , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , E2F Transcription Factors/metabolism , Female , Humans , MCF-7 Cells , Mice, SCID , Morpholines/administration & dosage , Piperazines/administration & dosage , Pyridines/administration & dosage , Pyrimidines , Receptors, Estrogen/metabolism , TOR Serine-Threonine Kinases/metabolism
12.
EMBO J ; 35(17): 1902-22, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27481935

ABSTRACT

We explore mechanisms that enable cancer cells to tolerate PI3K or Akt inhibitors. Prolonged treatment of breast cancer cells with PI3K or Akt inhibitors leads to increased expression and activation of a kinase termed SGK3 that is related to Akt. Under these conditions, SGK3 is controlled by hVps34 that generates PtdIns(3)P, which binds to the PX domain of SGK3 promoting phosphorylation and activation by its upstream PDK1 activator. Furthermore, under conditions of prolonged PI3K/Akt pathway inhibition, SGK3 substitutes for Akt by phosphorylating TSC2 to activate mTORC1. We characterise 14h, a compound that inhibits both SGK3 activity and activation in vivo, and show that a combination of Akt and SGK inhibitors induced marked regression of BT-474 breast cancer cell-derived tumours in a xenograft model. Finally, we present the kinome-wide analysis of mRNA expression dynamics induced by PI3K/Akt inhibition. Our findings highlight the importance of the hVps34-SGK3 pathway and suggest it represents a mechanism to counteract inhibition of PI3K/Akt signalling. The data support the potential of targeting both Akt and SGK as a cancer therapeutic.


Subject(s)
Carcinogenesis , Class III Phosphatidylinositol 3-Kinases/metabolism , Multiprotein Complexes/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Female , Heterografts , Humans , Mechanistic Target of Rapamycin Complex 1
13.
Oncotarget ; 7(16): 22128-39, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-26989080

ABSTRACT

Selective phosphoinositide 3-kinase (PI3K)/AKT/mTOR inhibitors are currently under evaluation in clinical studies. To identify tumor types that are sensitive to PI3K pathway inhibitors we screened compounds targeting PI3Kα/δ (AZD8835), PI3Kß/δ (AZD8186), AKT (AZD5363) and mTORC1/2 (AZD2014) against a cancer cell line panel (971 cell lines). There was an enrichment of hematological malignancies that were sensitive to AKT and mTOR inhibition, with the greatest degree of sensitivity observed in T-cell acute lymphoblastic leukemia (T-ALL). We found that all NOTCH mutant T-ALL cell lines were sensitive to AKT and mTORC1/2 inhibitors, with only partial sensitivity to agents that target the PI3K α, ß or δ isoforms. Induction of apoptosis only occurred following AKTi treatment in cell lines with PTEN protein loss and high levels of active AKT. In summary, we have demonstrated that T-ALL cell lines show differential sensitivity to inhibition at different nodes in the PI3K/AKT/mTOR pathway and inhibiting AKT or mTOR may have a therapeutic benefit in this disease setting.


Subject(s)
Antineoplastic Agents/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor/methods , Humans
14.
Mol Cancer Ther ; 14(11): 2441-51, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26351323

ABSTRACT

AKT1(E17K) mutations occur at low frequency in a variety of solid tumors, including those of the breast and urinary bladder. Although this mutation has been shown to transform rodent cells in culture, it was found to be less oncogenic than PIK3CA mutations in breast epithelial cells. Moreover, the therapeutic potential of AKT inhibitors in human tumors with an endogenous AKT1(E17K) mutation is not known. Expression of exogenous copies of AKT1(E17K) in MCF10A breast epithelial cells increased phosphorylation of AKT and its substrates, induced colony formation in soft agar, and formation of lesions in the mammary fat pad of immunodeficient mice. These effects were inhibited by the allosteric and catalytic AKT inhibitors MK-2206 and AZD5363, respectively. Both AKT inhibitors caused highly significant growth inhibition of breast cancer explant models with AKT1(E17K) mutation. Furthermore, in a phase I clinical study, the catalytic Akt inhibitor AZD5363 induced partial responses in patients with breast and ovarian cancer with tumors containing AKT1(E17K) mutations. In MGH-U3 bladder cancer xenografts, which contain both AKT1(E17K) and FGFR3(Y373C) mutations, AZD5363 monotherapy did not significantly reduce tumor growth, but tumor regression was observed in combination with the FGFR inhibitor AZD4547. The data show that tumors with AKT1(E17K) mutations are rational therapeutic targets for AKT inhibitors, although combinations with other targeted agents may be required where activating oncogenic mutations of other proteins are present in the same tumor.


Subject(s)
Mutation, Missense , Neoplasms/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Blotting, Western , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Doxycycline/pharmacology , Female , Heterocyclic Compounds, 3-Ring/administration & dosage , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Male , Mice, Nude , Neoplasms/drug therapy , Neoplasms/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrroles/administration & dosage , Pyrroles/pharmacology , Pyrroles/therapeutic use , Signal Transduction/drug effects , Xenograft Model Antitumor Assays/methods
15.
Int J Oncol ; 47(2): 446-54, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26095475

ABSTRACT

The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signalling network is frequently de-regulated in breast cancer and has been shown to mediate resistance to anti-HER2 agents. Whilst constitutive activation of this pathway is emerging as a marker of sensitivity to various PI3K pathway inhibitors, activity of these agents in the clinic may be limited by the presence of feedback loops, leading to reactivation of receptor tyrosine kinases, such as HER2/HER3. To determine whether inhibition of HER2 could increase the efficacy of AZD5363, a novel AKT inhibitor, a panel of breast cancer cells was dosed with AZD5363 in combination with AZD8931, an inhibitor of EGFR/HER2/HER3 signalling. We show that the combined treatment resulted in synergistic growth inhibition and enhanced cell death, specifically in the HER2-amplified cell lines. Investigation of the mechanism by western blot analysis revealed that the addition of AZD8931 prevented the induction of HER2/HER3 phosphorylation induced by AZD5363 and resulted in concomitant inhibition of both the PI3K/AKT/mTOR and ERK signalling pathways and induction of apoptosis. Using the HCC1954 xenograft model, which is resistant to trastuzumab, we show that the combination of AZD5363 and AZD8931 is more efficacious than either agent alone, resulting in profound tumour regressions. We conclude that the activity of AZD5363 in HER2-amplified breast cancer cells is enhanced by the addition of AZD8931 and that dual targeting of AKT and EGFR/HER2/HER3 signalling is an attractive treatment option to be explored in the clinic.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Breast Neoplasms/drug therapy , Gene Amplification , Pyrimidines/administration & dosage , Pyrroles/administration & dosage , Quinazolines/administration & dosage , Receptor, ErbB-2/genetics , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Female , Humans , MCF-7 Cells , Mice , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrroles/pharmacology , Quinazolines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Xenograft Model Antitumor Assays
16.
Mol Cancer Ther ; 14(1): 48-58, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25398829

ABSTRACT

Loss of PTEN protein results in upregulation of the PI3K/AKT pathway, which appears dependent on the PI3Kß isoform. Inhibitors of PI3Kß have potential to reduce growth of tumors in which loss of PTEN drives tumor progression. We have developed a small-molecule inhibitor of PI3Kß and PI3Kδ (AZD8186) and assessed its antitumor activity across a panel of cell lines. We have then explored the antitumor effects as single agent and in combination with docetaxel in triple-negative breast (TNBC) and prostate cancer models. In vitro, AZD8186 inhibited growth of a range of cell lines. Sensitivity was associated with inhibition of the AKT pathway. Cells sensitive to AZD8186 (GI50 < 1 µmol/L) are enriched for, but not exclusively associated with, PTEN deficiency. In vivo, AZD8186 inhibits PI3K pathway biomarkers in prostate and TNBC tumors. Scheduling treatment with AZD8186 shows antitumor activity required only intermittent exposure, and that increased tumor control is achieved when AZD8186 is used in combination with docetaxel. AZD8186 is a potent inhibitor of PI3Kß with activity against PI3Kδ signaling, and has potential to reduce growth of tumors dependent on dysregulated PTEN for growth. Moreover, AZD8186 can be combined with docetaxel, a chemotherapy commonly used to treat advanced TBNC and prostate tumors. The ability to schedule AZD8186 and maintain efficacy offers opportunity to combine AZD8186 more effectively with other drugs.


Subject(s)
Aniline Compounds/administration & dosage , Antineoplastic Agents/administration & dosage , Chromones/administration & dosage , Phosphoinositide-3 Kinase Inhibitors , Prostatic Neoplasms/drug therapy , Signal Transduction/drug effects , Taxoids/administration & dosage , Triple Negative Breast Neoplasms/drug therapy , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cell Line, Tumor , Cell Proliferation/drug effects , Chromones/pharmacology , Docetaxel , Drug Synergism , Female , Humans , Male , Mice , PTEN Phosphohydrolase/deficiency , Prostatic Neoplasms/metabolism , Triple Negative Breast Neoplasms/metabolism , Xenograft Model Antitumor Assays
17.
Eur Urol ; 67(6): 986-990, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25151012

ABSTRACT

UNLABELLED: The phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt (PI3K/Akt) pathway is a key pathway activated in castrate-resistant prostate cancer (CRPC). This preclinical study evaluates targeting of Akt with AZD5363 alone and in combination with enzalutamide (ENZ) to prevent and delay resistance. Our results demonstrate AZD5363 has significant proapoptotic, antiproliferative activity as monotherapy in ENZ-resistant cell lines in vitro and significantly decreased tumour growth in ENZ-resistant xenograft. The combination of AZD5363 and ENZ showed synergistic decreases in cell proliferation and induced cell-cycle arrest and apoptosis in prostate cancer cell lines LNCaP and C4-2. Notably, the combination of AZD5363 and ENZ resulted in an impressive regression of castrate-resistant LNCaP xenograft tumours without any recurrence demonstrated, whereas progression occurred with both monotherapies. Serum prostate-specific antigen (PSA) levels were also continuously suppressed, and nadir PSA levels were lower in the combination arm compared to ENZ alone. Combination AZD5363 and ENZ at time of castration similarly resulted in significant regression of tumours, with greater relative suppression of PSA compared to when administered to castrate-resistant xenografts. In summary, combination AZD5363 and ENZ significantly delays the development of ENZ resistance in preclinical models through synergistic increases in apoptosis and cell cycle arrest. Our results also suggest greater efficacy may be seen with earlier combination treatment. This study provides preclinical data to support evaluation of combination targeting of the PI3K/Akt pathway and the androgen-receptor axis in the clinic using AZD5363 and ENZ, respectively. PATIENT SUMMARY: Targeting of the Akt and androgen receptor pathways with AZD5363 and enzalutamide, respectively, significantly delayed the development of enzalutamide-resistant prostate cancer through increased apoptosis and cell cycle arrest. This preclinical synergy provides a strong rationale for clinical evaluation of this combination.


Subject(s)
Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Phenylthiohydantoin/analogs & derivatives , Prostate/drug effects , Prostatic Neoplasms, Castration-Resistant/drug therapy , Pyrimidines/pharmacology , Pyrroles/pharmacology , Antineoplastic Combined Chemotherapy Protocols , Apoptosis/drug effects , Benzamides , Cell Line, Tumor , Humans , Male , Nitriles , Phenylthiohydantoin/pharmacology , Prostate/cytology , Prostatic Neoplasms, Castration-Resistant/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Androgen/metabolism , Signal Transduction/drug effects , Treatment Outcome , Xenograft Model Antitumor Assays/methods
18.
Mol Cancer Ther ; 12(11): 2342-55, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23966621

ABSTRACT

The progression to castration-resistant prostate cancer (CRPC) correlates with gain-of-function of the androgen receptor (AR) and activation of AKT. However, as single agents, AR or AKT inhibitors result in a reciprocal feedback loop. Therefore, we hypothesized that combination of an AKT inhibitor with an antiandrogen might result in a more profound, long-lasting remission of CRPC. Here, we report that the AKT inhibitor AZD5363 potently inhibits proliferation and induces apoptosis in prostate cancer cell lines expressing the AR and has anticancer activity in vivo in androgen-sensitive and castration-resistant phases of the LNCaP xenograft model. However, we found that the effect of castration-resistant tumor growth inhibition and prostate-specific antigen (PSA) stabilization is transient and resistance occurs with increasing PSA after approximately 30 days of treatment. Mechanistically, we found that single agent AZD5363 induces increase of AR binding to androgen response element, AR transcriptional activity, and AR-dependent genes such as PSA and NKX3.1 expression. These effects were overcome by the combination of AZD5363 with the antiandrogen bicalutamide, resulting in synergistic inhibition of cell proliferation and induction of apoptosis in vitro, and prolongation of tumor growth inhibition and PSA stabilization in CRPC in vivo. This study provides a preclinical proof-of-concept that combination of an AKT inhibitor with antiandrogen results in prolonged disease stabilization in a model of CRPC.


Subject(s)
Androgen Receptor Antagonists/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrroles/pharmacology , Receptors, Androgen/metabolism , Signal Transduction/drug effects , Anilides/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Disease Progression , Drug Therapy, Combination , Humans , Male , Mice , Mice, Nude , Neoplasms, Experimental , Nitriles/pharmacology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Androgen/genetics , Tosyl Compounds/pharmacology , Xenograft Model Antitumor Assays
19.
J Med Chem ; 56(5): 2059-73, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23394218

ABSTRACT

Wide-ranging exploration of analogues of an ATP-competitive pyrrolopyrimidine inhibitor of Akt led to the discovery of clinical candidate AZD5363, which showed increased potency, reduced hERG affinity, and higher selectivity against the closely related AGC kinase ROCK. This compound demonstrated good preclinical drug metabolism and pharmacokinetics (DMPK) properties and, after oral dosing, showed pharmacodynamic knockdown of phosphorylation of Akt and downstream biomarkers in vivo, and inhibition of tumor growth in a breast cancer xenograft model.


Subject(s)
Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrroles/chemical synthesis , Administration, Oral , Cell Line, Tumor , Female , Humans , Inhibitory Concentration 50 , Models, Molecular , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
20.
Clin Cancer Res ; 19(4): 833-44, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23258740

ABSTRACT

PURPOSE: Prostate cancer development is often associated with deletion or silencing of tumor suppressor phosphatase and tensin homolog (PTEN), a negative regulator of the phosphoinositide 3 kinase (PI3K)-Akt pathway, leading to resistance to various therapies in both the preclinical and clinical setting. Therefore, the PI3K-Akt pathway plays a central role in various cellular processes promoting survival signaling that can contribute to the malignant phenotype, and, consequently, is an attractive pharmacologic target. However, as single agents, the efficacy of AKT inhibitors may be limited by resistance mechanisms that result in minimal cell death in tumor cells. EXPERIMENTAL DESIGN: We investigated the effects of the Akt inhibitor AZD5363 on cell proliferation, cell cycle, apoptosis, and Akt downstream pathway proteins. Survival mechanisms induced by AZD5363 were investigated. We then examined the impacts of inhibition of autophagy in combination with AZD5363 on cell proliferation and apoptosis. Furthermore, the anticancer activity of combination treatment of the lysosomotropic inhibitor of autophagy (chloroquine) with the Akt inhibitor AZD5363 was evaluated in PC-3 prostate cancer xenografts. RESULTS: Here, we show that the Akt inhibitor AZD5363 affected the Akt downstream pathway by reducing p-mTOR, p-P70S6K, and p-S6K. While AZD5363 monotherapy induced G(2) growth arrest and autophagy, it failed to induce significant apoptosis in PC-3 and DU145 prostate cancer cell lines. Blocking autophagy using pharmacologic inhibitors (3-methyladenine, chloroquine, and bafilomycin A) or genetic inhibitors (siRNA targeting Atg3 and Atg7) enhanced cell death induced by Akt inhibitor AZD5363 in these tumor prostate cell lines. Importantly, the combination of AZD5363 with chloroquine significantly reduced tumor volume by 84.9% compared with the control group and by 77.5% compared with either drug alone in PC3 xenografts. CONCLUSION: Taken together, these data show that the Akt inhibitor AZD5363 synergizes with the lysosomotropic inhibitor of autophagy chloroquine to induce apoptosis and delay tumor progression in prostate cancer models that are resistant to monotherapy AZD5363, providing a new therapeutic approach potentially translatable to patients.


Subject(s)
Autophagy/genetics , Lysosomes/metabolism , Oncogene Protein v-akt/metabolism , Prostatic Neoplasms/drug therapy , Pyrimidines/administration & dosage , Pyrroles/administration & dosage , Autophagy/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chloroquine/administration & dosage , Drug Resistance, Neoplasm/genetics , Drug Synergism , Humans , Lysosomes/drug effects , Lysosomes/pathology , Male , Oncogene Protein v-akt/antagonists & inhibitors , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...