Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(3): e0213915, 2019.
Article in English | MEDLINE | ID: mdl-30897173

ABSTRACT

It has long been recognized that the process of preserving biological specimens results in alterations of body shape, though detailed studies examining the degree to which morphological changes occur throughout the preservation process are lacking. We utilize geometric morphometric analyses, an increasingly common tool for examining shape variation in a wide variety of biological disciplines, to examine the effects of formalin and ethanol preservation on the body shape of 10 freshwater fish species over time: from fresh specimens to eight weeks after preservation. We found significant changes in body shape among fresh and formalin fixed specimens. Furthermore, changes in body shape continue to occur after subsequent ethanol preservation. Two fish species collected at multiple localities show significant morphological differences for a limited number of morphometric characters. However, the significance, or lack thereof, often changed inconsistently from one stage of preservation to another. We conclude that morphometric analyses would ideally be performed on fresh specimens. However, recognizing that this is not always feasible, it is important to be aware of the morphometric changes that can occur during preservation.


Subject(s)
Fishes/anatomy & histology , Preservation, Biological , Animals , Body Size , Fishes/classification , Fixatives , Formaldehyde , Linear Models , Species Specificity , Time Factors , Tissue Fixation
2.
PeerJ ; 6: e6144, 2019.
Article in English | MEDLINE | ID: mdl-30631643

ABSTRACT

Freshwater fish communities segregate along water temperature gradients attributed in part to temperature-mediated physiological processes that affect species fitness. In spring complexes of southwest USA, spring complexes with narrow range of water temperatures are dominated by a community of fishes (i.e., spring-associated fishes), whereas riverine habitats with wide-range of water temperatures are dominated by a different community of fishes (i.e., riverine-associated fishes). The purpose of this study was to test a prediction of the concept that temperature-mediated species performance is a mechanism in maintaining community segregation. We predicted that a spring-associated fish (Largespring Gambusia Gambusia geiseri) would feed first and more often in a pairing with a riverine-associated fish (Western Mosquitofish G. affinis) at an average spring temperature (23 °C) and that the riverine-associated fish would feed first and more often in a pairing with the spring-associated fish at a warm riverine temperature (30 °C). Among four trails consisting of 30 pairings, at the spring complex temperature (23 °C), Largespring Gambusia had a greater number of first feeds (mean ± 1 SD, 5.0 ± 0.82) than Western Mosquitofish (2.5 ± 1.73) and had greater mean number of total feeds (1.9 ± 0.31) than Western Mosquitofish (0.81 ± 0.70). At the riverine environment temperature (30 °C), Western Mosquitofish had a greater number of first feeds (5.25 ± 1.71) than Largespring Gambusia (2.5 ± 1.73) and had greater mean number of total feeds (2.78 ± 1.05) than Largespring Gambusia (0.94 ± 0.68). Our findings suggest that temperature-mediated species performance could be maintaining segregation between the two fish communities. This study benefits our understanding of distributional patterns and improves threat assessments of stenothermal aquatic organisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...