Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicology ; 313(2-3): 174-84, 2013 Nov 16.
Article in English | MEDLINE | ID: mdl-23182768

ABSTRACT

Emergency preparedness personnel at U.S. Department of Energy (DOE) facilities use the chemical mixture methodology (CMM) to estimate the potential health impacts to workers and the public from the unintended airborne release of chemical mixtures. The CMM uses a Hazard Index (HI) for each chemical in a mixture to compare a chemical's concentration at a receptor location to an appropriate concentration limit for that chemical. This limit is typically based on Protection Action Criteria (PAC) values developed and published by the DOE. As a first cut, the CMM sums the HIs for all the chemicals in a mixture to conservatively estimate their combined health impact. A cumulative HI>1.0 represents a concentration exceeding the concentration limit and indicates the potential for adverse health effects. Next, Health Code Numbers (HCNs) are used to identify the target organ systems that may be impacted by exposure to each chemical in a mixture. The sum of the HIs for the maximally impacted target organ system is used to provide a refined, though still conservative, estimate of the potential for adverse health effects from exposure to the chemical mixture. This paper explores approaches to enhance the effectiveness of the CMM by using HCN weighting factors. A series of 24 case studies have been defined to evaluate both the existing CMM and three new approaches for improving the CMM. The first approach uses a set of HCN weighting factors that are applied based on the priority ranking of the HCNs for each chemical. The second approach uses weighting factors based on the priority rankings of the HCNs established for a given type of concentration limit. The third approach uses weighting factors that are based on the exposure route used to derive PAC values and a priority ranking of the HCNs (the same ranking as used in the second approach). Initial testing indicates that applying weighting factors increases the effectiveness of the CMM in general, though care must be taken to avoid introducing non-conservative results. In the near future, additional testing and analysis will be conducted that may lead to the adoption of one of the tested approaches into the CMM.


Subject(s)
Chemical Hazard Release , Civil Defense/methods , Complex Mixtures/toxicity , Disaster Planning , Models, Theoretical , Complex Mixtures/chemistry , Humans , Risk Assessment/methods
2.
J Appl Toxicol ; 30(6): 513-24, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20635331

ABSTRACT

The Chemical Mixture Methodology (CMM) is used for emergency response and safety planning by the US Department of Energy, its contractors and other private and public sector organizations. The CMM estimates potential health impacts on individuals and their ability to take protective actions as a result of exposure to airborne chemical mixtures. It is based on the concentration of each chemical in the mixture at a designated receptor location, the protective action criteria (PAC) providing chemical-specific exposure limit values and the health code numbers (HCNs) that identify the target organ groupings that may be impacted by exposure to each chemical in a mixture. The CMM has been significantly improved since its introduction more than 10 years ago. Major enhancements involve the expansion of the number of HCNs from 44 to 60 and inclusion of updated PAC values based on an improved development methodology and updates in the data used to derive the PAC values. Comparisons between the 1999 and 2009 versions of the CMM show potentially substantial changes in the assessment results for selected sets of chemical mixtures. In particular, the toxic mode hazard indices (HIs) and target organ HIs are based on more refined acute HCNs, thereby improving the quality of chemical consequence assessment, emergency planning and emergency response decision-making. Seven hypothetical chemical storage and processing scenarios are used to demonstrate how the CMM is applied in emergency planning and hazard assessment.


Subject(s)
Air Pollutants/toxicity , Civil Defense/methods , Complex Mixtures/toxicity , Disaster Planning/methods , Air Pollutants/analysis , Civil Defense/trends , Complex Mixtures/analysis , Disaster Planning/trends , Environmental Monitoring/methods , Environmental Monitoring/standards , Risk Assessment , Threshold Limit Values , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...