Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 9(6): 862-74, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26731775

ABSTRACT

This paper presents a batteryless system-on-chip (SoC) that operates off energy harvested from indoor solar cells and/or thermoelectric generators (TEGs) on the body. Fabricated in a commercial 0.13 µW process, this SoC sensing platform consists of an integrated energy harvesting and power management unit (EH-PMU) with maximum power point tracking, multiple sensing modalities, programmable core and a low power microcontroller with several hardware accelerators to enable energy-efficient digital signal processing, ultra-low-power (ULP) asymmetric radios for wireless transmission, and a 100 nW wake-up radio. The EH-PMU achieves a peak end-to-end efficiency of 75% delivering power to a 100 µA load. In an example motion detection application, the SoC reads data from an accelerometer through SPI, processes it, and sends it over the radio. The SPI and digital processing consume only 2.27 µW, while the integrated radio consumes 4.18 µW when transmitting at 187.5 kbps for a total of 6.45 µW.


Subject(s)
Electronics, Medical/instrumentation , Wireless Technology/instrumentation , Equipment Design , Signal Processing, Computer-Assisted
2.
Circ Res ; 99(3): 257-65, 2006 Aug 04.
Article in English | MEDLINE | ID: mdl-16794189

ABSTRACT

The potential to promote neovascularization in ischemic tissues using exogenous agents has become an exciting area of therapeutics. In an attempt to identify novel small molecules with angiogenesis promoting activity, we screened a library of natural products and identified a sulfated steroid, sokotrasterol sulfate, that induces angiogenesis in vitro and in vivo. We show that sokotrasterol sulfate promotes endothelial sprouting in vitro, new blood vessel formation on the chick chorioallantoic membrane, and accelerates angiogenesis and reperfusion in a mouse hindlimb ischemia model. We demonstrate that sulfation of the steroid is critical for promoting angiogenesis, as the desulfated steroid exhibited no endothelial sprouting activity. We thus developed a chemically synthesized sokotrasterol sulfate analog, 2beta,3alpha,6alpha-cholestanetrisulfate, that demonstrated equivalent activity in the hindlimb ischemia model and resulted in the generation of stable vessels that persisted following cessation of therapy. The function of sokotrasterol sulfate was dependent on cyclooxygenase-2 activity and vascular endothelial growth factor induction, as inhibition of either cyclooxygenase-2 or vascular endothelial growth factor blocked angiogenesis. Surface expression of alpha(v)beta(3) integrin was also necessary for function, as neutralization of alpha(v)beta(3) integrin, but not beta(1) integrin, binding abrogated endothelial sprouting and antiapoptotic activity in response to sokotrasterol sulfate. Our findings indicate that sokotrasterol sulfate and its analogs can promote angiogenesis in vitro and in vivo and could potentially be used for promoting neovascularization to relieve the sequelae of vasoocclusive diseases.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Cholestenes/pharmacology , Neovascularization, Physiologic/drug effects , Animals , Chick Embryo , Chorioallantoic Membrane/blood supply , Cyclooxygenase 2/metabolism , Endothelium, Vascular/drug effects , Hindlimb , Integrin alphaVbeta3/metabolism , Ischemia/drug therapy , Mice , Reperfusion , Steroids/pharmacology , Vascular Endothelial Growth Factor A/genetics
3.
Planta Med ; 71(10): 938-43, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16254826

ABSTRACT

A phenotypic cell-based assay for inhibitors of the G (2) DNA damage checkpoint was used to screen plant extracts from the US National Cancer Institute Natural Products Repository. It revealed activity in a methanol extract from the common ragweed Ambrosia artemisiifolia. Assay-guided fractionation led to the identification of the sesquiterpene lactones psilostachyins A and C as novel checkpoint inhibitors. Elimination of their alpha,beta-unsaturated carbonyl group caused a loss of activity, suggesting that the compounds can bind covalently to target proteins through Michael addition. Psilostachyins A and C also blocked cells in mitosis and caused the formation of aberrant microtubule spindles. However, the compounds did not interfere with microtubule polymerization in vitro. The related sesquiterpene lactones psilostachyin B, paulitin and isopaulitin were also isolated from the same extract but showed no checkpoint inhibition. The identification of the target(s) of psilostachyins A and C may provide further insight into the signalling pathways involved in cell cycle arrest and mitotic progression.


Subject(s)
Ambrosia , Antineoplastic Agents, Phytogenic/pharmacology , Cell Cycle/drug effects , G2 Phase , Mitosis/drug effects , Phytotherapy , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/therapeutic use , Cell Line, Tumor/drug effects , Dose-Response Relationship, Drug , Humans , Plant Extracts/administration & dosage , Plant Extracts/therapeutic use , Sesquiterpenes/administration & dosage , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use
4.
J Org Chem ; 67(1): 245-58, 2002 Jan 11.
Article in English | MEDLINE | ID: mdl-11777468

ABSTRACT

Extracts of the sponge Xestospongia exigua collected in Papua New Guinea were positive in a new assay for anti-invasion activity. Bioassay-guided fractionation led to the identification of the three known motuporamines A (1), B (2), and C (3) along with the new motuporamines D (4), E (5), and F (6) and a mixture of G, H, and I (15). Motuporamines A (1), B (2), and C (3) and the mixture of G, H, and I (15) were responsible for the anti-invasion activity of the crude extract. Motuporamine C (3) has also been found to be anti-angiogenic. A series of analogues of the motuporamines have been synthesized and evaluated for anti-invasive activity. These SAR results revealed that a saturated 15-membered cyclic amine fused to the natural motuporamine diamine side chain (13) represented the optimal structure for anti-invasive activity in this family. Single-crystal X-ray diffraction analysis of one of the analogues 20 showed that in the solid state its 16-membered macrocyclic amine fragment adopted the [4444] quadrangular conformation predicted by calculations to be the lowest energy conformation for the corresponding cycloalkane, cyclohexadecane. These data along with literature X-ray data and conformational analysis for derivatives of azacyclotridecane have been used as precedents for predicting the lowest energy ring conformations of other motuporamines. The SAR data from the natural and synthetic motuporamines have been combined with the conformational analyses to provide an outline of the functionality and shape required for activity in this family of alkaloids and to design a new analogue 49 that showed good anti-invasion activity.


Subject(s)
Alkaloids/chemistry , Antineoplastic Agents/chemistry , Alkaloids/isolation & purification , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/isolation & purification , Animals , Antineoplastic Agents/isolation & purification , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/prevention & control , Nuclear Magnetic Resonance, Biomolecular , Porifera/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured/drug effects , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...