Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.946
Filter
1.
bioRxiv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38979183

ABSTRACT

Background: MHC class I (MHC-I) loss is frequent in non-small cell lung cancer (NSCLC) rendering tumor cells resistant to T cell lysis. NK cells kill MHC-I-deficient tumor cells, and although previous work indicated their presence at NSCLC margins, they were functionally impaired. Within, we evaluated whether NK cell and CD8 T cell infiltration and activation vary with MHC-I expression. Methods: We used single-stain immunohistochemistry (IHC) and Kaplan-Meier analysis to test the effect of NK cell and CD8 T cell infiltration on overall and disease-free survival. To delineate immune covariates of MHC-I-disparate lung cancers, we used multiplexed immunofluorescence (mIF) imaging followed by multivariate statistical modeling. To identify differences in infiltration and intercellular communication between IFNγ-activated and non-activated lymphocytes, we developed a computational pipeline to enumerate single cell neighborhoods from mIF images followed by multivariate discriminant analysis. Results: Spatial quantitation of tumor cell MHC-I expression revealed intra- and inter-tumoral heterogeneity, which was associated with the local lymphocyte landscape. IHC analysis revealed that high CD56+ cell numbers in patient tumors were positively associated with disease-free survival (DFS) (HR=0.58, p=0.064) and overall survival (OS) (HR=0.496, p=0.041). The OS association strengthened with high counts of both CD56+ and CD8+ cells (HR=0.199, p<1×10-3). mIF imaging and multivariate discriminant analysis revealed enrichment of both CD3+CD8+ T cells and CD3-CD56+ NK cells in MHC-I-bearing tumors (p<0.05). To infer associations of functional cell states and local cell-cell communication, we analyzed spatial single cell neighborhood profiles to delineate the cellular environments of IFNγ+/- NK cells and T cells. We discovered that both IFNγ+ NK and CD8 T cells were more frequently associated with other IFNγ+ lymphocytes in comparison to IFNγ- NK cells and CD8 T cells (p<1×10-30). Moreover, IFNγ+ lymphocytes were most often found clustered near MHC-I+ tumor cells. Conclusions: Tumor-infiltrating NK cells and CD8 T cells jointly affected control of NSCLC tumor progression. Co-association of NK and CD8 T cells was most evident in MHC-I-bearing tumors, especially in the presence of IFNγ. Frequent co-localization of IFNγ+ NK cells with other IFNγ+ lymphocytes in near-neighbor analysis suggests NSCLC lymphocyte activation is coordinately regulated.

2.
Article in English | MEDLINE | ID: mdl-38969926

ABSTRACT

BACKGROUND: Arsenic, cadmium, and lead are toxic elements that widely contaminate our environment. These toxicants are associated with acute and chronic health problems, and evidence suggests that minority communities, including Hispanic/Latino Americans, are disproportionately exposed. Few studies have assessed culturally specific predictors of exposure to understand the potential drivers of racial/ethnic exposure disparities. OBJECTIVE: We sought to evaluate acculturation measures as predictors of metal/metalloid (hereafter "metal") concentrations among Mexican American adults to illuminate potential exposure sources that may be targeted for interventions. METHODS: As part of a longitudinal cohort, 510 adults, aged 35 to 69 years, underwent baseline interview, physical examination, and urine sample collection. Self-reported acculturation was assessed across various domains using the Short Acculturation Scale for Hispanics (SASH). Multivariable linear regression was used to assess associations between acculturation and urinary concentrations of arsenic, cadmium, and lead. Ordinal logistic regression was utilized to assess associations between acculturation and a metal mixture score. Lastly, best subset selection was used to build a prediction model for each toxic metal with a combination of the acculturation predictors. RESULTS: After adjustment, immigration factors were positively associated with arsenic and lead concentrations. For lead alone, English language and American media and food preferences were associated with lower levels. Immigration and parental heritage from Mexico were positively associated with the metal mixture, while preferences for English language, media, and food were negatively associated. CONCLUSION: Acculturation-related predictors of exposure provide information about potential sources of toxic metals, including international travel, foods, and consumer products. The findings in this research study provide information to empower future efforts to identify and address specific acculturation-associated toxicant exposures in order to promote health equity through clinical guidance, patient education, and public policy.

3.
Nat Commun ; 15(1): 5574, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956430

ABSTRACT

The biomedical research community addresses reproducibility challenges in animal studies through standardized nomenclature, improved experimental design, transparent reporting, data sharing, and centralized repositories. The ARRIVE guidelines outline documentation standards for laboratory animals in experiments, but genetic information is often incomplete. To remedy this, we propose the Laboratory Animal Genetic Reporting (LAG-R) framework. LAG-R aims to document animals' genetic makeup in scientific publications, providing essential details for replication and appropriate model use. While verifying complete genetic compositions may be impractical, better reporting and validation efforts enhance reliability of research. LAG-R standardization will bolster reproducibility, peer review, and overall scientific rigor.


Subject(s)
Animals, Laboratory , Guidelines as Topic , Animals , Animals, Laboratory/genetics , Reproducibility of Results , Research Design , Animal Experimentation/standards , Biomedical Research/standards
4.
Obes Res Clin Pract ; 18(3): 238-241, 2024.
Article in English | MEDLINE | ID: mdl-38955574

ABSTRACT

BACKGROUND AND AIMS: This study assessed whether the addition of continuous positive airway pressure (CPAP) during weight loss would enhance cardiometabolic health improvements in patients with obesity and Obstructive Sleep Apnoea (OSA). METHODS AND RESULTS: Patients with overweight or obesity, pre-diabetes and moderatesevere OSA were randomised to receive CPAP therapy with a weight loss programme (CPAP+WL) or a weight loss programme alone (WL alone). PRIMARY OUTCOME: 2-hour glucose assessed by an oral glucose tolerance test. SECONDARY OUTCOMES: 24 hr blood pressure, body composition (DEXA) and fasting blood markers. 17 patients completed 3-month follow-up assessments (8 CPAP+WL and 9 WL alone). Overall, participants in both groups lost ∼12 kg which reduced polysomnography determined OSA severity by ∼45 %. In the CPAP+WL group, CPAP use (compliance 5.29 hrs/night) did not improve any outcome above WL alone. There was no improvement in 2-hour glucose in either group. However, in the pooled (n = 17) analysis there were overall improvements in most outcomes including insulin sensitivity (.000965 units, p = .008), sleep systolic BP (- 16.2 mmHg, p = .0003), sleep diastolic BP (-9.8 mmHg, p = 0.02), wake diastolic BP (- 4.3 mmHg, p = .03) and sleepiness (Epworth Sleepiness Score -3.2, p = .0003). In addition, there were reductions in glucose area under the curve (-230 units, p = .009), total (-0.86 mmol/L, p = 0.006) and LDL cholesterol (-0.58 mmol/L, p = 0.007), triglycerides (-0.75 mmol/L, p = 0.004), fat mass (-7.6 kg, p < .0001) and abdominal fat (-310 cm3, p < .0001). CONCLUSION: Weight loss reduced OSA and improved sleepiness and cardiometabolic health. These improvements were not further enhanced by using CPAP. Results suggest weight loss should be the primary focus of treatment for patients with OSA and obesity.


Subject(s)
Blood Glucose , Continuous Positive Airway Pressure , Obesity , Sleep Apnea, Obstructive , Weight Loss , Humans , Continuous Positive Airway Pressure/methods , Male , Female , Middle Aged , Pilot Projects , Sleep Apnea, Obstructive/therapy , Sleep Apnea, Obstructive/complications , Obesity/therapy , Obesity/complications , Adult , Blood Glucose/metabolism , Blood Pressure , Treatment Outcome , Polysomnography , Insulin Resistance , Weight Reduction Programs/methods , Overweight/therapy , Overweight/complications , Glucose Tolerance Test , Aged
5.
bioRxiv ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38915607

ABSTRACT

We report the development of a nanotechnology to co-deliver chemocoxib A with a reactive oxygen species (ROS)-activatable and COX-2 targeted pro-fluorescent probe, fluorocoxib Q (FQ) enabling real time visualization of COX-2 and CA drug delivery into solid cancers, using a di-block PPS 135 - b -POEGA 17 copolymer, selected for its intrinsic responsiveness to elevated reactive oxygen species (ROS), a key trait of the tumor microenvironment. FQ and CA were synthesized independently, then co-encapsulated within micellar PPS 135 - b -POEGA 17 co-polymeric nanoparticles (FQ-CA-NPs), and were assessed for cargo concentration, hydrodynamic diameter, zeta potential, and ROS-dependent cargo release. The uptake of FQ-CA-NPs in mouse mammary cancer cells and cargo release was assessed by fluorescence microscopy. Intravenous delivery of FQ-CA-NPs to mice harboring orthotopic mammary tumors, followed by vital optimal imaging, was used to assess delivery to tumors in vivo . The CA-FQ-NPs exhibited a hydrodynamic diameter of 109.2 ± 4.1 nm and a zeta potential (σ) of -1.59 ± 0.3 mV. Fluorescence microscopy showed ROS-dependent cargo release by FQ-CA-NPs in 4T1 cells, decreasing growth of 4T1 breast cancer cells, but not affecting growth of primary human mammary epithelial cells (HMECs). NP-derived fluorescence was detected in mammary tumors, but not in healthy organs. Tumor LC-MS/MS analysis identified both CA (2.38 nmol/g tumor tissue) and FQ (0.115 nmol/g tumor tissue), confirming the FQ-mediated image guidance of CA delivery in solid tumors. Thus, co-encapsulation of FQ and CA into micellar nanoparticles (FQ-CA-NPs) enabled ROS-sensitive drug release and COX-2-targeted visualization of solid tumors.

6.
bioRxiv ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38915549

ABSTRACT

Short-interfering RNA (siRNA) has gained significant interest for treatment of neurological diseases by providing the capacity to achieve sustained inhibition of nearly any gene target. Yet, achieving efficacious drug delivery throughout deep brain structures of the CNS remains a considerable hurdle. We herein describe a lipid-siRNA conjugate that, following delivery into the cerebrospinal fluid (CSF), is transported effectively through perivascular spaces, enabling broad dispersion within CSF compartments and through the CNS parenchyma. We provide a detailed examination of the temporal kinetics of gene silencing, highlighting potent knockdown for up to five months from a single injection without detectable toxicity. Single-cell RNA sequencing further demonstrates gene silencing activity across diverse cell populations in the parenchyma and at brain borders, which may provide new avenues for neurological disease-modifying therapies.

7.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891774

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder. While there are five FDA-approved drugs for treating this disease, each has only modest benefits. To design new and more effective therapies for ALS, particularly for sporadic ALS of unknown and diverse etiologies, we must identify key, convergent mechanisms of disease pathogenesis. This review focuses on the origin and effects of glutamate-mediated excitotoxicity in ALS (the cortical hyperexcitability hypothesis), in which increased glutamatergic signaling causes motor neurons to become hyperexcitable and eventually die. We characterize both primary and secondary contributions to excitotoxicity, referring to processes taking place at the synapse and within the cell, respectively. 'Primary pathways' include upregulation of calcium-permeable AMPA receptors, dysfunction of the EAAT2 astrocytic glutamate transporter, increased release of glutamate from the presynaptic terminal, and reduced inhibition by cortical interneurons-all of which have been observed in ALS patients and model systems. 'Secondary pathways' include changes to mitochondrial morphology and function, increased production of reactive oxygen species, and endoplasmic reticulum (ER) stress. By identifying key targets in the excitotoxicity cascade, we emphasize the importance of this pathway in the pathogenesis of ALS and suggest that intervening in this pathway could be effective for developing therapies for this disease.


Subject(s)
Amyotrophic Lateral Sclerosis , Glutamic Acid , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Humans , Glutamic Acid/metabolism , Animals , Motor Neurons/metabolism , Motor Neurons/pathology , Aging/metabolism , Receptors, AMPA/metabolism , Endoplasmic Reticulum Stress , Mitochondria/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Astrocytes/metabolism , Reactive Oxygen Species/metabolism
8.
Phys Chem Chem Phys ; 26(23): 16859-16870, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38832453

ABSTRACT

We report the preparation of a co-crystal formed between the energetic molecule 3-nitro-1,2,4-triazol-5-one (NTO) and 4,4'-bipyridine (BIPY), that has been structurally characterised by high-pressure single crystal and neutron powder diffraction data up to 5.93 GPa. No phase transitions or proton transfer were observed up to this pressure. At higher pressures the crystal quality degraded and the X-ray diffraction patterns showed severe twinning, with the appearance of multiple crystalline domains. Computational modelling indicates that the colour changes observed on application of pressure can be attributed to compression of the unit cell that cause heightened band dispersion and band gap narrowing that coincides with a shortening of the BIPY π⋯π stacking distance. Modelling also suggests that the application of pressure induces proton migration along an N-H⋯N intermolecular hydrogen bond. Impact-sensitivity measurements show that the co-crystal is less sensitive to initiation than NTO, whereas computational modelling suggests that the impact sensitivities of NTO and the co-crystal are broadly similar.

9.
J Am Chem Soc ; 146(20): 14246-14259, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728108

ABSTRACT

The hydrogenation of CO2 holds promise for transforming the production of renewable fuels and chemicals. However, the challenge lies in developing robust and selective catalysts for this process. Transition metal oxide catalysts, particularly cobalt oxide, have shown potential for CO2 hydrogenation, with performance heavily reliant on crystal phase and morphology. Achieving precise control over these catalyst attributes through colloidal nanoparticle synthesis could pave the way for catalyst and process advancement. Yet, navigating the complexities of colloidal nanoparticle syntheses, governed by numerous input variables, poses a significant challenge in systematically controlling resultant catalyst features. We present a multivariate Bayesian optimization, coupled with a data-driven classifier, to map the synthetic design space for colloidal CoO nanoparticles and simultaneously optimize them for multiple catalytically relevant features within a target crystalline phase. The optimized experimental conditions yielded small, phase-pure rock salt CoO nanoparticles of uniform size and shape. These optimized nanoparticles were then supported on SiO2 and assessed for thermocatalytic CO2 hydrogenation against larger, polydisperse CoO nanoparticles on SiO2 and a conventionally prepared catalyst. The optimized CoO/SiO2 catalyst consistently exhibited higher activity and CH4 selectivity (ca. 98%) across various pretreatment reduction temperatures as compared to the other catalysts. This remarkable performance was attributed to particle stability and consistent H* surface coverage, even after undergoing the highest temperature reduction, achieving a more stable catalytic species that resists sintering and carbon occlusion.

10.
Proc Natl Acad Sci U S A ; 121(22): e2313216121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781209

ABSTRACT

Plant root systems play a pivotal role in plant physiology and exhibit diverse phenotypic traits. Understanding the genetic mechanisms governing root growth and development in model plants like maize is crucial for enhancing crop resilience to drought and nutrient limitations. This study focused on identifying and characterizing ZmPILS6, an annotated auxin efflux carrier, as a key regulator of various crown root traits in maize. ZmPILS6-modified roots displayed reduced network area and suppressed lateral root formation, which are desirable traits for the "steep, cheap, and deep" ideotype. The research revealed that ZmPILS6 localizes to the endoplasmic reticulum and plays a vital role in controlling the spatial distribution of indole-3-acetic acid (IAA or "auxin") in primary roots. The study also demonstrated that ZmPILS6 can actively efflux IAA when expressed in yeast. Furthermore, the loss of ZmPILS6 resulted in significant proteome remodeling in maize roots, particularly affecting hormone signaling pathways. To identify potential interacting partners of ZmPILS6, a weighted gene coexpression analysis was performed. Altogether, this research contributes to the growing knowledge of essential genetic determinants governing maize root morphogenesis, which is crucial for guiding agricultural improvement strategies.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids , Plant Proteins , Plant Roots , Zea mays , Zea mays/genetics , Zea mays/growth & development , Zea mays/metabolism , Indoleacetic Acids/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Morphogenesis/genetics , Biological Transport
11.
Elife ; 132024 May 29.
Article in English | MEDLINE | ID: mdl-38809771

ABSTRACT

The yeast SWR1C chromatin remodeling enzyme catalyzes the ATP-dependent exchange of nucleosomal histone H2A for the histone variant H2A.Z, a key variant involved in a multitude of nuclear functions. How the 14-subunit SWR1C engages the nucleosomal substrate remains largely unknown. Studies on the ISWI, CHD1, and SWI/SNF families of chromatin remodeling enzymes have demonstrated key roles for the nucleosomal acidic patch for remodeling activity, however a role for this nucleosomal epitope in nucleosome editing by SWR1C has not been tested. Here, we employ a variety of biochemical assays to demonstrate an essential role for the acidic patch in the H2A.Z exchange reaction. Utilizing asymmetrically assembled nucleosomes, we demonstrate that the acidic patches on each face of the nucleosome are required for SWR1C-mediated dimer exchange, suggesting SWR1C engages the nucleosome in a 'pincer-like' conformation, engaging both patches simultaneously. Loss of a single acidic patch results in loss of high affinity nucleosome binding and nucleosomal stimulation of ATPase activity. We identify a conserved arginine-rich motif within the Swc5 subunit that binds the acidic patch and is key for dimer exchange activity. In addition, our cryoEM structure of a Swc5-nucleosome complex suggests that promoter proximal, histone H2B ubiquitylation may regulate H2A.Z deposition. Together these findings provide new insights into how SWR1C engages its nucleosomal substrate to promote efficient H2A.Z deposition.


Subject(s)
Adenosine Triphosphatases , Histones , Nucleosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Histones/metabolism , Histones/chemistry , Nucleosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Chromatin Assembly and Disassembly , Protein Binding , Protein Multimerization
12.
J Am Chem Soc ; 146(21): 14600-14609, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748814

ABSTRACT

We constructed a photoanode comprising the homogeneous water oxidation catalyst (WOC) Na8K8[Co9(H2O)6(OH)3(HPO4)2(PW9O34)3] (Co9POM) and nanoporous n-type TiO2 photoelectrodes (henceforth "TiO2-Co9POM") by first anchoring the cationic 3-aminopropyltrimethoxysilane (APS) ligand on a metal oxide light absorber, followed by treatment of the metal oxide-APS with a solution of the polyoxometalate WOC. The resulting TiO2-Co9POM photoelectrode exhibits a 3-fold oxygen evolution photocurrent enhancement compared to bare TiO2 in aqueous acidic conditions. Three-element (Co 2p, W 4f, and O 1s) X-ray photoelectron spectroscopy and Raman spectroscopy studies before and after use indicate that surface-bound Co9POM retains its structural integrity throughout all photoelectrochemical water oxidation studies reported here. Extensive charge-transfer mechanistic studies by photoelectrochemical techniques and transient absorption spectroscopy elucidate that Co9POM serves as an efficient WOC, extracting photogenerated holes from TiO2 on the picosecond time scale. This is the first comprehensive mechanistic investigation elucidating the roles of polyoxometalates in POM-photoelectrode hybrid oxygen evolution reaction systems.

13.
Cancer Immunol Res ; 12(4): 382, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38562080

ABSTRACT

Cancer vaccines targeting mutated neoantigens offer promise for prevention of cancer recurrence and for treatment of established cancers. Questions remain about whether vaccines need to target multiple neoantigens and whether they need to target both CD8+ and CD4+ T cells. In this issue, Garzia and colleagues demonstrate the importance of including multiple antigens to stimulate both CD4+ T cells and CD8+ T cells for treatment of established cancer. See related article by Garzia et al., p. 440 (4).


Subject(s)
Cancer Vaccines , Neoplasms , Humans , Antigens, Neoplasm , CD4-Positive T-Lymphocytes , Neoplasms/therapy , CD8-Positive T-Lymphocytes
14.
JAMA Netw Open ; 7(4): e246228, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38607626

ABSTRACT

Importance: Less than 5% of patients with cancer enroll in a clinical trial, partly due to financial and logistic burdens, especially among underserved populations. The COVID-19 pandemic marked a substantial shift in the adoption of decentralized trial operations by pharmaceutical companies. Objective: To assess the current global state of adoption of decentralized trial technologies, understand factors that may be driving or preventing adoption, and highlight aspirations and direction for industry to enable more patient-centric trials. Design, Setting, and Participants: The Bloomberg New Economy International Cancer Coalition, composed of patient advocacy, industry, government regulator, and academic medical center representatives, developed a survey directed to global biopharmaceutical companies of the coalition from October 1 through December 31, 2022, with a focus on registrational clinical trials. The data for this survey study were analyzed between January 1 and 31, 2023. Exposure: Adoption of decentralized clinical trial technologies. Main Outcomes and Measures: The survey measured (1) outcomes of different remote monitoring and data collection technologies on patient centricity, (2) adoption of these technologies in oncology and all therapeutic areas, and (3) barriers and facilitators to adoption using descriptive statistics. Results: All 8 invited coalition companies completed the survey, representing 33% of the oncology market by revenues in 2021. Across nearly all technologies, adoption in oncology trials lags that of all trials. In the current state, electronic diaries and electronic clinical outcome assessments are the most used technology, with a mean (SD) of 56% (19%) and 51% (29%) adoption for all trials and oncology trials, respectively, whereas visits within local physician networks is the least adopted at a mean (SD) of 12% (18%) and 7% (9%), respectively. Looking forward, the difference between the current and aspired adoption rate in 5 years for oncology is large, with respondents expecting a 40% or greater absolute adoption increase in 8 of the 11 technologies surveyed. Furthermore, digitally enabled recruitment, local imaging capabilities, and local physician networks were identified as technologies that could be most effective for improving patient centricity in the long term. Conclusions and Relevance: These findings may help to galvanize momentum toward greater adoption of enabling technologies to support a new paradigm of trials that are more accessible, less burdensome, and more inclusive.


Subject(s)
Clinical Trials as Topic , Neoplasms , Humans , Data Collection , Medical Oncology
15.
Pediatr Transplant ; 28(3): e14750, 2024 May.
Article in English | MEDLINE | ID: mdl-38623880

ABSTRACT

BACKGROUND: Pediatric allogeneic hematopoietic cell transplant (allo-HCT) recipients are at risk for morbidity and mortality from human adenovirus (HAdV). HAdV can be detected in an asymptomatic state, referred to as infection or with signs or symptoms of illness, referred to as disease. Standardized case definitions are needed to distinguish infection from disease and allow for consistent reporting in both observational cohort studies and therapeutic clinical trials. METHODS: A working group of experts in virology, transplant infectious disease, and HCT was assembled to develop HAdV infection and disease definitions with the degree of certainty (i.e., possible, probable, and proven). Definitions were further refined through an iterative process and independently applied by two central review committees (CRCs) to 20 pediatric allo-HCT recipients with at least one HAdV-positive PCR. RESULTS: Initial HAdV infection and disease definitions were developed and updated through an iterative process after reviewing clinical and virological details for 81 subjects with at least one positive HAdV PCR detected in a clinical specimen. Independent application of final definitions to 20 HAdV positive allo-HCT recipients by two CRCs yielded similar number of HAdV infection or disease events but with variation of degree of certainty for some events. CONCLUSIONS: Application of definitions by a CRC for a study of HAdV infection and disease is feasible and can provide consistency in the assignment of outcomes. Definitions need further refinement to improve reproducibility and to provide guidance on determining clinical improvement or worsening after initial diagnosis of HAdV infection or disease.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Hematopoietic Stem Cell Transplantation , Child , Humans , Adenovirus Infections, Human/diagnosis , Reproducibility of Results , Transplantation, Homologous , Cohort Studies
16.
Microb Pathog ; 191: 106657, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38649100

ABSTRACT

Staphylococcus aureus is a major human pathogen that can cause infections that range from superficial skin and mucosal infections to life threatening disseminated infections. S. aureus can attach to medical devices and host tissues and form biofilms that allow the bacteria to evade the host immune system and provide protection from antimicrobial agents. To counter host-generated oxidative and nitrosative stress mechanisms that are part of the normal host responses to invading pathogens, S. aureus utilizes low molecular weight (LMW) thiols, such as bacillithiol (BSH). Additionally, S. aureus synthesizes its own nitric oxide (NO), which combined with its downstream metabolites may also protect the bacteria against specific host responses. We have previously shown that LMW thiols are required for biofilm formation in Mycobacterium smegmatis and Pseudomonas aeruginosa. Here, we show that the S. aureus bshC mutant strain, which is defective in the last step of the BSH pathway and lacks BSH, is impaired in biofilm formation. We also identify a possible S-nitrosobacillithiol reductase (BSNOR), similar in sequence to an S-nitrosomycothiol reductase found in M. smegmatis and show that the putative S. aureus bsnoR mutant strain has reduced levels of BSH and decreased biofilm formation. Our studies also show that NO plays an important role in biofilm formation and that acidified sodium nitrite severely reduces biofilm thickness. These studies provide insight into the roles of oxidative and nitrosative stress mechanisms on biofilm formation and indicate that BSH and NO are key players in normal biofilm formation in S. aureus.


Subject(s)
Biofilms , Cysteine , Glucosamine , Nitric Oxide , Staphylococcus aureus , Biofilms/growth & development , Staphylococcus aureus/physiology , Staphylococcus aureus/genetics , Glucosamine/analogs & derivatives , Glucosamine/metabolism , Cysteine/analogs & derivatives , Cysteine/metabolism , Nitric Oxide/metabolism , Sodium Nitrite/pharmacology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/physiology , Mycobacterium smegmatis/metabolism , Mutation , Humans , Oxidoreductases/metabolism , Oxidoreductases/genetics , Sulfhydryl Compounds/metabolism , Oxidative Stress
17.
Chem Commun (Camb) ; 60(35): 4663-4666, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38591135

ABSTRACT

The response of the trimethylammonium-iodinechloride and diiodide (TMA-ICl/I2) crystal structures have been examined under high pressure using neutron powder diffraction. TMA-ICl exhibits impressive pressure-driven electronic flexibility, where the N⋯I-Cl interactions progressively encompass all the distances represented in analogous structures recorded in the Cambridge Structural Database. Comparison with the TMA-I2 complex reveals that this flexibility is owed to the electronegativity of the chlorine atom which induces increased distortion of the iodine electron cloud. This structural flexibility may be influential in the future design of functional molecular materials.

18.
PLoS Pathog ; 20(4): e1012142, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574111

ABSTRACT

RNA viruses and viroids exist and evolve as quasispecies due to error-prone replication. Quasispecies consist of a few dominant master sequences alongside numerous variants that contribute to genetic diversity. Upon environmental changes, certain variants within quasispecies have the potential to become the dominant sequences, leading to the emergence of novel infectious strains. However, the emergence of new infectious variants remains unpredictable. Using mutant pools prepared by saturation mutagenesis of selected stem and loop regions, our study of potato spindle tuber viroid (PSTVd) demonstrates that mutants forming local three-dimensional (3D) structures similar to the wild type (WT) are more likely to accumulate in PSTVd quasispecies. The selection mechanisms underlying this biased accumulation are likely associated with cell-to-cell movement and long-distance trafficking. Moreover, certain trafficking-defective PSTVd mutants can be spread by functional sister genomes in the quasispecies. Our study reveals that the RNA 3D structure of stems and loops constrains the evolution of viroid quasispecies. Mutants with a structure similar to WT have a higher likelihood of being maintained within the quasispecies and can potentially give rise to novel infectious variants. These findings emphasize the potential of targeting RNA 3D structure as a more robust approach to defend against viroid infections.


Subject(s)
Plant Viruses , Solanum tuberosum , Viroids , Viroids/genetics , Solanum tuberosum/genetics , RNA, Viral/genetics , RNA, Viral/chemistry , Quasispecies , Mutagenesis , Plant Diseases , Plant Viruses/genetics
19.
ACS ES T Eng ; 4(3): 660-672, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38481751

ABSTRACT

Municipalities with excess anaerobic digestion capacity accept offsite wastes for co-digestion to meet sustainability goals and create more biogas. Despite the benefits inherent to co-digestion, the temporal and compositional heterogeneity of external waste streams creates operational challenges that lead to upsets or conservative co-digestion. Given the complex microbial bioprocesses occurring during anaerobic digestion, prediction and modeling of the outcomes can be challenging, and machine learning has the potential to improve understanding and control of co-digestion processes. Biogas flows are a surrogate for process health, and here, we predicted biogas production from historical data collected by a water resource recovery facility (WRRF) during normal operation. We tested a daily lab and operational data set (n = 1089 after cleaning) and a minute-by-minute supervisory control and data acquisition (SCADA) operational data set (n = 491,761 after cleaning) to determine if forecasting biogas flow for a 24 h time horizon is feasible without collecting additional data. We found that a multilayer perceptron (MLP) neural network model outperformed tree-based and multiple linear regression models. Using a high-resolution SCADA data set for the first time, we showed that MLP neural networks could predict biogas production with an adjusted coefficient of determination (R2) of 0.78 and a mean absolute percentage error of 13.4% on a holdout test set. Adding daily laboratory analyses to the model did not appreciably improve the prediction of biogas flows. Feature engineering was essential to an accurate prediction, and 11 of the 15 most important features in the SCADA model were calculated from raw SCADA outputs. In summary, this paper demonstrates that minute-scale SCADA information collected at a municipal co-digestion facility can forecast biogas production, as a first step toward a digital twin model, without additional data collection.

20.
Nat Commun ; 15(1): 2625, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521763

ABSTRACT

Homology Directed Repair (HDR) enables precise genome editing, but the implementation of HDR-based therapies is hindered by limited efficiency in comparison to methods that exploit alternative DNA repair routes, such as Non-Homologous End Joining (NHEJ). In this study, we develop a functional, pooled screening platform to identify protein-based reagents that improve HDR in human hematopoietic stem and progenitor cells (HSPCs). We leverage this screening platform to explore sequence diversity at the binding interface of the NHEJ inhibitor i53 and its target, 53BP1, identifying optimized variants that enable new intermolecular bonds and robustly increase HDR. We show that these variants specifically reduce insertion-deletion outcomes without increasing off-target editing, synergize with a DNAPK inhibitor molecule, and can be applied at manufacturing scale to increase the fraction of cells bearing repaired alleles. This screening platform can enable the discovery of future gene editing reagents that improve HDR outcomes.


Subject(s)
CRISPR-Cas Systems , Recombinational DNA Repair , Humans , Gene Editing/methods , DNA Repair , DNA End-Joining Repair
SELECTION OF CITATIONS
SEARCH DETAIL
...