Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Physiol B ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37910192

ABSTRACT

Activity patterns tend to be highly stereotyped and critical for executing many different behaviors including foraging, social interactions, and predator avoidance. Differences in the circadian timing of locomotor activity and rest periods can facilitate habitat partitioning and the exploitation of novel niches. As a consequence, closely related species often display highly divergent activity patterns, suggesting that shifts from diurnal to nocturnal behavior, or vice versa, are critical for survival. In Africa's Lake Malawi alone, there are over 500 species of cichlids, which inhabit diverse environments and exhibit extensive phenotypic variation. We have previously identified a substantial range in activity patterns across adult Lake Malawi cichlid species, from strongly diurnal to strongly nocturnal. In many species, including fishes, ecological pressures differ dramatically across life-history stages, raising the possibility that activity patterns may change over ontogeny. To determine if rest-activity patterns change across life stages, we compared the locomotor patterns of six Lake Malawi cichlid species. While total rest and activity did not change between early juvenile and adult stages, rest-activity patterns did, with juveniles displaying distinct activity rhythms that are more robust than adults. One distinct difference between juveniles and adults is the emergence of complex social behavior. To determine whether social context is required for activity rhythms, we next measured locomotor behavior in group-housed adult fish. We found that when normal social interactions were allowed, locomotor activity patterns were restored, supporting the notion that social interactions promote circadian regulation of activity in adult fish. These findings reveal a previously unidentified link between developmental stage and social interactions in the circadian timing of cichlid activity.

2.
Mol Ecol ; 30(2): 464-480, 2021 01.
Article in English | MEDLINE | ID: mdl-33231336

ABSTRACT

Phenotypic integration is an important metric that describes the degree of covariation among traits in a population, and is hypothesized to arise due to selection for shared functional processes. Our ability to identify the genetic and/or developmental underpinnings of integration is marred by temporally overlapping cell-, tissue- and structure-level processes that serve to continually 'overwrite' the structure of covariation among traits through ontogeny. Here, we examine whether traits that are integrated at the phenotypic level also exhibit a shared genetic basis (e.g. pleiotropy). We micro-CT scanned two hard tissue traits, and two soft tissue traits (mandible, pectoral girdle, atrium and ventricle, respectively) from an F5 hybrid population of Lake Malawi cichlids, and used geometric morphometrics to extract 3D shape information from each trait. Given the large degree of asymmetric variation that may reflect developmental instability, we separated symmetric from asymmetric components of shape variation. We then performed quantitative trait loci (QTL) analysis to determine the degree of genetic overlap between shapes. While we found ubiquitous associations among traits at the phenotypic level, except for a handful of notable exceptions, our QTL analysis revealed few overlapping genetic regions. Taken together, this indicates developmental interactions can play a large role in determining the degree of phenotypic integration among traits, and likely obfuscate the genotype to phenotype map, limiting our ability to gain a comprehensive picture of the genetic contributors responsible for phenotypic divergence.


Subject(s)
Cichlids , Quantitative Trait Loci , Animals , Cichlids/genetics , Genotype , Phenotype , Quantitative Trait Loci/genetics
3.
Mol Biol Evol ; 31(12): 3113-24, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25234704

ABSTRACT

Since the time of Darwin, biologists have sought to understand the origins and maintenance of life's diversity of form. However, the nature of the exact DNA mutations and molecular mechanisms that result in morphological differences between species remains unclear. Here, we characterize a nonsynonymous mutation in a transcriptional coactivator, limb bud and heart homolog (lbh), which is associated with adaptive variation in the lower jaw of cichlid fishes. Using both zebrafish and Xenopus, we demonstrate that lbh mediates migration of cranial neural crest cells, the cellular source of the craniofacial skeleton. A single amino acid change that is alternatively fixed in cichlids with differing facial morphologies results in discrete shifts in migration patterns of this multipotent cell type that are consistent with both embryological and adult craniofacial phenotypes. Among animals, this polymorphism in lbh represents a rare example of a coding change that is associated with continuous morphological variation. This work offers novel insights into the development and evolution of the craniofacial skeleton, underscores the evolutionary potential of neural crest cells, and extends our understanding of the genetic nature of mutations that underlie divergence in complex phenotypes.


Subject(s)
Cichlids/genetics , Fish Proteins/genetics , Neural Crest/cytology , Trans-Activators/genetics , Adaptation, Biological , Animals , Cell Movement , Cichlids/anatomy & histology , Evolution, Molecular , Female , Genetic Loci , Jaw/anatomy & histology , Molecular Sequence Data , Mutation, Missense , Phenotype , Phylogeny , Xenopus laevis , Zebrafish
4.
Methods Cell Biol ; 101: 225-48, 2011.
Article in English | MEDLINE | ID: mdl-21550447

ABSTRACT

The zebrafish has emerged as an important model for vertebrate development as it relates to human health and disease. Work in this system has provided significant insights into the variety of genetic signals that direct the cellular activities and tissue interactions necessary for proper assembly of the pharyngeal skeleton. Unfortunately our understanding of craniofacial development beyond embryonic stages is far less complete. Stated another way, we know a great deal about the early patterning of the skull, but we know comparatively little about how mature craniofacial shape is determined and maintained over time. Here we propose ways to expand the current molecular genetic paradigm beyond the embryo to gain an understanding of the processes and mechanisms that guide growth and remodeling of mineralized craniofacial, skeletal, and dental tissues. First, we discuss sources of adult mutant phenotypes that can be used to study of postembryonic development. Next, we review salient quantitative methods that are necessary to define complex adult phenotypes. We also discuss how other organismal systems can be used to inform and complement studies in zebrafish. We conclude by discussing the implications for such studies within the context of furthering an understanding of the etiology and pathophysiology of human craniofacial malformations, as well as informing an understanding of adaptive craniofacial variation among natural populations.


Subject(s)
Jaw/physiology , Maxillofacial Development/physiology , Zebrafish/growth & development , Animals , Gene Expression Regulation, Developmental , Humans , Maxillofacial Development/genetics , Morphogenesis/genetics , Morphogenesis/physiology , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...