Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1808: 148336, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36948353

ABSTRACT

Impaired attention is central to the cognitive deficits associated with long-term sequelae for many traumatic brain injury (TBI) survivors. Assessing complex sustained attention post-TBI is clinically-relevant and may provide reliable avenues towards developing therapeutic and rehabilitation targets in both males and females. We hypothesized that rats subjected to a moderate TBI will exhibit attentional deficits seen as reduced accuracy and increased distractibility in an operant 3-choice serial reaction time task (3-CSRT), designed as an analogue of the clinical continuous performance test. Upon reaching baseline of 70% accuracy at the 300 ms cue, adult male and female Sprague-Dawley rats were subjected to a controlled cortical impact (2.8 mm deformation at 4 m/s) or sham injury over the right parietal cortex. After two weeks of recovery, they were retested on the 3-CSRT for ten days. Dependent measures include percent accuracy (overall and for each of the three cue ports), percent omissions, as well as latency to instrumental poke and retrieve reward. Results demonstrate that both males and females displayed reduced percent accuracy and increased omissions when re-tested post-TBI on 3-CSRT compared to Sham rats and to their own pre-insult baseline (p's < 0.05). Performance accuracy was impaired consistently throughout the ten days of post-surgery re-testing, suggesting pronounced and long-lasting dysfunction in sustained attention processes. Deficits were specifically more pronounced when the cue was pseudorandomly presented in the left-side cue port (p < 0.05), mirroring clinical hemispatial neglect. These data demonstrate significant and persistent complex attention impairments in both sexes after TBI, rendering identifying efficient therapies for cognitive recovery as pivotal.


Subject(s)
Brain Injuries, Traumatic , Cognition Disorders , Rats , Male , Female , Animals , Reaction Time , Rats, Sprague-Dawley , Brain Injuries, Traumatic/drug therapy , Attention
2.
J Neurotrauma ; 40(1-2): 112-124, 2023 01.
Article in English | MEDLINE | ID: mdl-35979888

ABSTRACT

Traumatic brain injuries (TBIs) affect more than 10 million patients annually worldwide, causing long-term cognitive and psychosocial impairments. Frontal lobe TBIs commonly impair executive function, but laboratory models typically focus primarily on spatial learning and declarative memory. We implemented a multi-modal approach for clinically relevant cognitive-behavioral assessments of frontal lobe function in rats with TBI and assessed treatment benefits of the serotonin-norepinephrine reuptake inhibitor, milnacipran (MLN). Two attentional set-shifting tasks (AST) evaluated cognitive flexibility via the rats' ability to locate food-based rewards by learning, unlearning, and relearning sequential rule sets with shifting salient cues. Adult male rats reached stable pre-injury operant AST (oAST) performance in 3-4 weeks, then were isoflurane-anesthetized, subjected to a unilateral frontal lobe controlled cortical impact (2.4 mm depth, 4 m/sec velocity) or Sham injury, and randomized to treatment conditions. Milnacipran (30 mg/kg/day) or vehicle (VEH; 10% ethanol in saline) was administered intraperitoneally via implanted osmotic minipumps (continuous infusions post-surgery, 60 µL/h). Rats had a 10-day recovery post-TBI/Sham before performing light/location-based oAST for 10 days and, subsequently, odor/media-based digging AST (dAST) on the last test day (26-27 days post-injury) before sacrifice. Both AST tests revealed significant deficits in TBI+VEH rats, seen as elevated total trials and errors (p < 0.05), which generally normalized in MLN-treated rats (p < 0.05). This first simultaneous dual AST assessment demonstrates oAST and dAST are sufficiently sensitive and robust to detect subtle attentional and cognitive flexibility executive impairments after frontal lobe TBI in rats. Chronic MLN administration shows promise for attenuation of post-TBI executive function deficits, thus meriting further investigation.


Subject(s)
Brain Injuries, Traumatic , Executive Function , Animals , Male , Rats , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Disease Models, Animal , Frontal Lobe , Maze Learning , Milnacipran , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...