Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Res Methods ; 53(5): 1817-1832, 2021 10.
Article in English | MEDLINE | ID: mdl-33575986

ABSTRACT

Sign language offers a unique perspective on the human faculty of language by illustrating that linguistic abilities are not bound to speech and writing. In studies of spoken and written language processing, lexical variables such as, for example, age of acquisition have been found to play an important role, but such information is not as yet available for German Sign Language (Deutsche Gebärdensprache, DGS). Here, we present a set of norms for frequency, age of acquisition, and iconicity for more than 300 lexical DGS signs, derived from subjective ratings by 32 deaf signers. We also provide additional norms for iconicity and transparency for the same set of signs derived from ratings by 30 hearing non-signers. In addition to empirical norming data, the dataset includes machine-readable information about a sign's correspondence in German and English, as well as annotations of lexico-semantic and phonological properties: one-handed vs. two-handed, place of articulation, most likely lexical class, animacy, verb type, (potential) homonymy, and potential dialectal variation. Finally, we include information about sign onset and offset for all stimulus clips from automated motion-tracking data. All norms, stimulus clips, data, as well as code used for analysis are made available through the Open Science Framework in the hope that they may prove to be useful to other researchers: https://doi.org/10.17605/OSF.IO/MZ8J4.


Subject(s)
Psycholinguistics , Sign Language , Humans , Language , Linguistics , Semantics
2.
Beilstein J Nanotechnol ; 5: 1905-17, 2014.
Article in English | MEDLINE | ID: mdl-25383302

ABSTRACT

In recent years, the development of smart drug delivery systems based on biodegradable polymeric nanoparticles has become of great interest. Drug-loaded nanoparticles can be introduced into the cell interior via endocytotic processes followed by the slow release of the drug due to degradation of the nanoparticle. In this work, poly(L-lactic acid) (PLLA) was chosen as the biodegradable polymer. Although common degradation of PLLA has been studied in various biological environments, intracellular degradation processes have been examined only to a very limited extent. PLLA nanoparticles with an average diameter of approximately 120 nm were decorated with magnetite nanocrystals and introduced into mesenchymal stem cells (MSCs). The release of the magnetite particles from the surface of the PLLA nanoparticles during the intracellular residence was monitored by transmission electron microscopy (TEM) over a period of 14 days. It was demonstrated by the release of the magnetite nanocrystals from the PLLA surface that the PLLA nanoparticles do in fact undergo degradation within the cell. Furthermore, even after 14 days of residence, the PLLA nanoparticles were found in the MSCs. Additionally, the ultrastructural TEM examinations yield insight into the long term intercellular fate of these nanoparticles. From the statistical analysis of ultrastructural details (e.g., number of detached magnetite crystals, and the number of nanoparticles in one endosome), we demonstrate the importance of TEM studies for such applications in addition to fluorescence studies (flow cytometry and confocal laser scanning microscopy).

SELECTION OF CITATIONS
SEARCH DETAIL
...