Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Dent Mater ; 30(6): 605-12, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24674341

ABSTRACT

OBJECTIVES: A model BisGMA/TEGDMA unfilled resin was utilized to investigate the effect of varied irradiation intensity on the photopolymerization kinetics and shrinkage stress evolution, as a means for evaluation of the reciprocity relationship. METHODS: Functional group conversion was determined by FTIR spectroscopy and polymerization shrinkage stress was obtained by a tensometer. Samples were polymerized with UV light from an EXFO Acticure with 0.1wt% photoinitiator. A one-dimensional kinetic model was utilized to predict the conversion-dose relationship. RESULTS: As irradiation intensity increased, conversion decreased at a constant irradiation dose and the overall dose required to achieve full conversion increased. Methacrylate conversion ranged from 64±2% at 3mW/cm(2) to 78±1% at 24mW/cm(2) while the final shrinkage stress varied from 2.4±0.1MPa to 3.0±0.1MPa. The ultimate conversion and shrinkage stress levels achieved were dependent not only upon dose but also the irradiation intensity, in contrast to an idealized reciprocity relationship. A kinetic model was utilized to analyze this behavior and provide theoretical conversion profiles versus irradiation time and dose. SIGNIFICANCE: Analysis of the experimental and modeling results demonstrated that the polymerization kinetics do not and should not be expected to follow the reciprocity law behavior. As irradiation intensity is increased, the overall dose required to achieve full conversion also increased. Further, the ultimate conversion and shrinkage stress that are achieved are not dependent only upon dose but rather upon the irradiation intensity and corresponding polymerization rate.


Subject(s)
Light , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Dose-Response Relationship, Radiation , Models, Chemical , Polymerization , Spectroscopy, Fourier Transform Infrared
2.
Polymer (Guildf) ; 53(12): 2429-2434, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22798700

ABSTRACT

In this study, we develop thiol/acrylate two-stage reactive network forming polymer systems that exhibit two distinct and orthogonal stages of curing. Using a thiol-acrylate system with excess acrylate functional groups, a first stage polymer network is formed via a 1 to 1 stoichiometric thiol-acrylate Michael addition reaction (stage 1). At a later point in time, the excess acrylate functional groups are homopolymerized via a photoinitiated free radical polymerization to form a second stage polymer network (stage 2). By varying the monomers within the system as well as the stoichiometery of the thiol to acrylate functional groups, we demonstrate the ability of the two-stage polymer network forming systems to encompass a wide range of properties at the end of both the stage 1 and stage 2 polymerizations. Using urethane di- and hexa-acrylates within the formulations led to two-stage reactive polymeric systems with stage 1 T(g)s that ranged from -12 to 30 °C. The systems were then photocured, upon which the T(g) of the systems increases by up to 90 °C while also achieving a nearly 20 fold modulus increase.

3.
Dent Mater ; 28(9): 1004-11, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22717296

ABSTRACT

OBJECTIVE: Fillers are widely utilized to enhance the mechanical properties of polymer resins. However, polymerization stress has the potential to increase due to the higher elastic modulus achieved upon filler addition. Here, we demonstrate a hyperbranched oligomer functionalized glass filler UV curable resin composite which is able to reduce the shrinkage stress without sacrificing mechanical properties. METHODS: A 16-functional alkene-terminated hyperbranched oligomer is synthesized by thiol-acrylate and thiol-yne reactions and the product structure is analyzed by (1)H NMR, mass spectroscopy, and gel permeation chromatography. Surface functionalization of the glass filler is measured by thermogravimetric analysis. Reaction kinetics, mechanical properties and shrinkage stress are studied via Fourier transform infrared spectroscopy, dynamic mechanical analysis and a tensometer, respectively. RESULTS: Silica nanoparticles are functionalized with a flexible 16-functional alkene-terminated hyperbranched oligomer which is synthesized by multistage thiol-ene/yne reactions. 93% of the particle surface was covered by this oligomer and an interfacial layer ranging from 0.7 nm to 4.5 nm thickness is generated. A composite system with these functionalized silica nanoparticles incorporated into the thiol-yne-methacrylate resin demonstrates 30% reduction of shrinkage stress (from 0.9 MPa to 0.6 MPa) without sacrificing the modulus (3100 ± 300 MPa) or glass transition temperature (62 ± 3°C). Moreover, the shrinkage stress of the composite system builds up at much later stages of the polymerization as compared to the control system. SIGNIFICANCE: Due to the capability of reducing shrinkage stress without sacrificing mechanical properties, this composite system will be a great candidate for dental composite applications.


Subject(s)
Composite Resins/chemical synthesis , Glass/chemistry , Methacrylates/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Analysis of Variance , Elastic Modulus , Molecular Structure , Polymerization , Spectroscopy, Fourier Transform Infrared
4.
Macromolecules ; 44(12): 4988-4996, 2011 Jun 28.
Article in English | MEDLINE | ID: mdl-21765552

ABSTRACT

Induction curing is demonstrated as a novel type of in situ radiation curing that maintains most of the advantages of photocuring while eliminating the restriction of light accessibility. Induction curing is utilized to polymerize opaque composites comprised of thiol-acrylate and thiol-ene resins, nanoscale magnetic particles, and carbon nanotubes. Nanoscale magnetic particles are dispersed in the resin and upon exposure to the magnetic field, these particles lead to induction heating that rapidly initiates the polymerization. Heat transfer profiles and reaction kinetics of the samples are modeled during the reactions with varying induction heater power, species concentration, species type and sample thickness, and the model is compared with the experimental results. Thiol-ene polymerizations achieved full conversion between 1.5 minutes and 1 hour, depending on the field intensity and the composition, with the maximum reaction temperature decreasing from 146 - 87 °C when the induction heater power was decreased from 8 - 3 kW. The polymerization reactions of the thiol-acrylate system were demonstrated to achieve full conversion between 0.6 and 30 minutes with maximum temperatures from 139 to 86 °C. The experimental behavior was characterized and the temperature profile modeled for the thiol-acrylate composite comprised of sub100nm nickel particles and induction heater power in the range of 32 to 20 kW. A 9°C average deviation was observed between the modeling and experimental results for the maximum temperature rise. The model also was utilized to predict reaction temperatures and kinetics for systems with varying thermal initiator concentration, initiator half-life, monomer molecular weight and temperature gradients in samples with varying thickness, thereby demonstrating that induction curing represents a designable and tunable polymerization method. Finally, induction curing was utilized to cure thiol-acrylate systems containing carbon nanotubes where 1 wt% carbon nanotubes resulted in systems where the storage modulus increased from 17.6 ± 0.2 to 21.6 ± 0.1 MPa and an electrical conductivity that increased from <10(-7) to 0.33 ± 0.5 S/m.

5.
Lab Chip ; 11(16): 2772-8, 2011 Aug 21.
Article in English | MEDLINE | ID: mdl-21691663

ABSTRACT

In this work, a novel thiol-ene based photopolymerizable resin formulation was shown to exhibit highly desirable characteristics, such as low cure time and the ability to overcome oxygen inhibition, for the photolithographic fabrication of microfluidic devices. The feature fidelity, as well as various aspects of the feature shape and quality, were assessed as functions of various resin attributes, particularly the exposure conditions, initiator concentration and inhibitor to initiator ratio. An optical technique was utilized to evaluate the feature fidelity as well as the feature shape and quality. These results were used to optimize the thiol-ene resin formulation to produce high fidelity, high aspect ratio features without significant reductions in feature quality. For structures with aspect ratios below 2, little difference (<3%) in feature quality was observed between thiol-ene and acrylate based formulations. However, at higher aspect ratios, the thiol-ene resin exhibited significantly improved feature quality. At an aspect ratio of 8, raised feature quality for the thiol-ene resin was dramatically better than that achieved by using the acrylate resin. The use of the thiol-ene based resin enabled fabrication of a pinched-flow microfluidic device that has complex channel geometry, small (50 µm) channel dimensions, and high aspect ratio (14) features.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Resins, Synthetic/chemistry , Sulfhydryl Compounds/chemistry , Particle Size , Surface Properties
6.
Dent Mater ; 27(3): 267-72, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21122904

ABSTRACT

OBJECTIVES: The objective of this study was to evaluate composite methacrylate-thiol-ene formulations with varying thiol:ene stoichiometry relative to composite dimethacrylate control formulations. It was hypothesized that the methacrylate-thiol-ene systems would exhibit superior properties relative to the dimethacrylate control resins and that excess thiol relative to ene would further enhance shrinkage and conversion associated properties. METHODS: Polymerization kinetics and functional group conversions were determined by Fourier transform infrared spectroscopy (FTIR). Volume shrinkage was measured with a linometer and shrinkage stress was measured with a tensometer. Flexural modulus and strength, depth of cure, water sorption and solubility tests were all performed according to ISO 4049. RESULTS: All of the methacrylate-thiol-ene systems exhibited improvements in methacrylate conversion, flexural strength, shrinkage stress, depth of cure, and water solubility, while maintaining equivalent flexural modulus and water sorption relative to the dimethacrylate control systems. Increasing the thiol to ene stoichiometry resulted in further increased methacrylate functional group conversion and decreased volume shrinkage. Flexural modulus and strength, shrinkage stress, depth of cure, water sorption and solubility did not exhibit statistically significant changes with excess thiol. SIGNIFICANCE: Due to their improved overall functional group conversion and reduced water sorption, the methacrylate-thiol-ene formulations are expected to exhibit improved biocompatibility relative to the dimethacrylate control systems. Improvements in flexural strength and reduced shrinkage stress may be expected to result in composite restorations with superior longevity and performance.


Subject(s)
Composite Resins/chemistry , Dental Restoration, Permanent , Ethers/chemistry , Methacrylates/chemistry , Sulfhydryl Compounds/chemistry , Absorption , Analysis of Variance , Dental Stress Analysis , Elastic Modulus , Kinetics , Materials Testing , Pliability , Polyethylene Glycols/chemistry , Polymerization , Spectroscopy, Fourier Transform Infrared , Statistics, Nonparametric , Stress, Mechanical , Water
7.
Macromolecules ; 44(23): 9084-9090, 2011 Dec 13.
Article in English | MEDLINE | ID: mdl-22232561

ABSTRACT

Thiol-yne-methacrylate and thiol-yne-acrylate ternary systems were investigated for polymerization kinetics and material properties and compared to the analogous pure thiol-yne and (meth)acrylate systems. Both thiol-yne-methacrylate and thiol-yne-acrylate systems were demonstrated to reduce polymerization induced shrinkage stress while simultaneously achieving high glass transition temperatures (T(g)) and modulius. Formulations with 70 wt% methacrylate increased the T(g) from 51 ± 2 to 75 ± 1 °C and the modulus from 1800 ± 100 to 3200 ± 400 MPa (44% increase) over the pure thiol-yne system. Additionally, the shrinkage stress was 1.2 ± 0.2 MPa, which is lower than that of the pure methacrylate, binary thiol-yne and thiol-ene-methacrylate control systems which are all > 2 MPa. Interestingly, with increasing methacrylate or acrylate concentration, a decrease and subsequent increase in the shrinkage stress values were observed. A minimum shrinkage stress value (1.0 ± 0.2 MPa) was observed in the 50 wt% methacrylate and 70 wt% acrylate systems. This tunable behavior results from the competitive reaction kinetics of the methacrylate or acrylate homopolymerization versus chain transfer to thiol and the accompanying thiol-yne step-growth polymerization. The crosslinking density of the networks and the amount of volumetric shrinkage that occurs prior to gelation relative to the total volumetric shrinkage were determined as two key factors that control the final shrinkage stress of the ternary systems.

8.
Polymer (Guildf) ; 51(19): 4383-4389, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-21072253

ABSTRACT

In this study we introduce the use of thiol-ene photopolymers as shape memory polymer systems. The thiol-ene polymer networks are compared to a commonly utilized acrylic shape memory polymer and shown to have significantly improved properties for two different thiol-ene based polymer formulations. Using thermomechanical and mechanical analysis, we demonstrate that thiol-ene based shape memory polymer systems have comparable thermomechanical properties while also exhibiting a number of advantageous properties due to the thiol-ene polymerization mechanism which results in the formation of a homogenous polymer network with low shrinkage stress and negligible oxygen inhibition. The resulting thiol-ene shape memory polymer systems are tough and flexible as compared to the acrylic counterparts. The polymers evaluated in this study were engineered to have a glass transition temperature between 30 and 40 °C, exhibited free strain recovery of greater than 96% and constrained stress recovery of 100%. The thiol-ene polymers exhibited excellent shape fixity and a rapid and distinct shape memory actuation response.

9.
Dent Mater ; 26(8): 799-806, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20553973

ABSTRACT

OBJECTIVES: The objective of this study was to evaluate ternary methacrylate-thiol-ene systems, with varying thiol-ene content and thiol:ene stoichiometry, as dental restorative resin materials. It was hypothesized that an off-stoichiometric thiol-ene component would enhance interactions between the methacrylate and thiol-ene processes to reduce shrinkage stress while maintaining equivalent mechanical properties. METHODS: Polymerization kinetics and functional group conversions were determined by Fourier transform infrared spectroscopy (FTIR). Cured resin mechanical properties were evaluated using a three-point flexural test, carried out with a hydraulic universal test system. Polymerization shrinkage stress was measured with a tensometer coupled with simultaneous real-time conversion monitoring. RESULTS: The incorporation of thiol-ene mixtures as reactive diluents into conventional dimethacrylate resins previously was shown to combine synergistically advantageous methacrylate mechanical properties with the improved polymerization kinetics and reduced shrinkage stress of thiol-ene systems. In these systems, due to thiol consumption resultant from both the thiol-ene reaction and chain transfer involving the methacrylate polymerization, the optimum thiol:ene stoichiometry deviates from the traditional 1:1 ratio. Increasing the thiol:ene stoichiometry up to 3:1 results in systems with equivalent flexural modulus, 6-20% reduced flexural strength, and 5-33% reduced shrinkage stress relative to 1:1 stoichiometric thiol:ene systems. SIGNIFICANCE: Due to their improved overall functional group conversion, and shrinkage stress reduction while maintaining equivalent flexural modulus, methacrylate-thiol-ene resins, particularly those with excess thiol, beyond the conventional 1:1 thiol:ene molar ratio, yield superior dental restorative materials compared with purely dimethacrylate resins.


Subject(s)
Allyl Compounds/chemistry , Composite Resins/chemistry , Dental Restoration, Permanent , Light-Curing of Dental Adhesives , Norbornanes/chemistry , Triazines/chemistry , Analysis of Variance , Dental Marginal Adaptation , Dental Stress Analysis , Kinetics , Materials Testing , Methacrylates/chemistry , Phase Transition , Pliability , Spectroscopy, Fourier Transform Infrared , Statistics, Nonparametric
10.
Dent Mater ; 26(1): 21-8, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19781757

ABSTRACT

OBJECTIVES: The objective of this work was to evaluate thiol-norbornene and thiol-ene-methacrylate systems as the resin phase of dental restorative materials and demonstrate their superior performance as compared to dimethacrylate materials. METHODS: Polymerization kinetics and overall functional group conversions were determined by Fourier transform infrared spectroscopy (FTIR). Flexural strength and modulus were determined with a 3-point flexural test. Polymerization-induced shrinkage stress was measured with a tensometer. RESULTS: Thiol-ene polymer systems were demonstrated to exhibit advantageous properties for dental restorative materials in regards to rapid curing kinetics, high conversion, and low shrinkage and stress. However, both the thiol-norbornene and thiol-allyl ether systems studied here exhibit significant reductions in flexural strength and modulus relative to BisGMA/TEGDMA. By utilizing the thiol-ene component as the reactive diluent in dimethacrylate systems, high flexural modulus and strength are achieved while dramatically reducing the polymerization shrinkage stress. The methacrylate-thiol-allyl ether and methacrylate-thiol-norbornene systems both exhibited equivalent flexural modulus (2.1+/-0.1 GPa) and slightly reduced flexural strength (95+/-1 and 101+/-3 MPa, respectively) relative to BisGMA/TEGDMA (flexural modulus; 2.2+0.1 GPa and flexural strength; 112+/-3 MPa). Both the methacrylate-thiol-allyl ether and methacrylate-thiol-norbornene systems exhibited dramatic reductions in shrinkage stress (1.1+/-0.1 and 1.1+/-0.2 MPa, respectively) relative to BisGMA/TEGDMA (2.6+/-0.2 MPa). SIGNIFICANCE: The improved polymerization kinetics and overall functional group conversion, coupled with reductions in shrinkage stress while maintaining equivalent flexural modulus, result in a superior overall dental restorative material as compared to traditional bulk dimethacrylate resins.


Subject(s)
Dental Materials/chemistry , Methacrylates/chemistry , Norbornanes/chemistry , Sulfhydryl Compounds/chemistry , 3-Mercaptopropionic Acid/analogs & derivatives , 3-Mercaptopropionic Acid/chemistry , Allyl Compounds/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Bridged Bicyclo Compounds/chemistry , Composite Resins/chemistry , Elastic Modulus , Heptanes/chemistry , Humans , Materials Testing , Pliability , Polyethylene Glycols/chemistry , Polymers/chemistry , Polymethacrylic Acids/chemistry , Propylene Glycols/chemistry , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical , Surface Properties , Triazines/chemistry
11.
Dent Mater ; 25(1): 33-8, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18584862

ABSTRACT

OBJECTIVES: This study evaluates the performance of highly reactive novel monomethacrylates characterized by various secondary moieties as reactive diluent alternatives to TEGDMA in BisGMA filled dental resins. We hypothesize that these monomers improve material properties and kinetics over TEGDMA because of their unique polymerization behavior. METHODS: The cure rates and final double bond conversion of the resins were measured using real-time FTIR spectroscopy. The glass transition temperature and storage modulus of the formed polymers were measured using dynamic mechanical analysis. Flexural modulus and flexural strength values were obtained using a three-point bending flexural test. RESULTS: Polymerization kinetics and polymer mechanical properties were evaluated for the novel resin composites. It was observed that upon the use of novel monomethacrylates as reactive diluents, polymerization kinetics increased by up to 3-fold accompanied by increases in the extent of cure from 5% to 13% as compared to the BisGMA/TEGDMA control. Polymer composites formed from resins of BisGMA/novel monomethacrylates exhibited comparable T(g) values to the control, along with 27-37% reductions in the glass transition half widths indicating the formation of more homogeneous polymeric networks. The BisGMA/monomethacrylate formulations exhibited equivalent flexural modulus and flexural strength values relative to BisGMA/TEGDMA. SIGNIFICANCE: Formulations containing novel monovinyl methacrylates exhibit dramatically increased curing rates while also exhibiting superior or at least comparable composite polymer mechanical properties. Thus, these types of materials are attractive for use as reactive diluent alternatives to TEGDMA in dental formulations.


Subject(s)
Bisphenol A-Glycidyl Methacrylate/chemistry , Composite Resins/chemistry , Dental Materials/chemistry , Methacrylates/chemistry , Barium Compounds/chemistry , Elastic Modulus , Glass/chemistry , Humans , Materials Testing , Morpholines/chemistry , Pliability , Polyethylene Glycols/chemistry , Polymers/chemistry , Polymethacrylic Acids/chemistry , Silanes/chemistry , Silicon Dioxide/chemistry , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical , Transition Temperature
12.
Macromolecules ; 42(7): 2433-2437, 2009 Mar 13.
Article in English | MEDLINE | ID: mdl-20827437

ABSTRACT

A cyclic acetal-functionalized urethane acrylate monomer is synthesized here and polymerized in a crystalline state without the polymerization kinetics being deleteriously affected by the solid state. Depending on the processing conditions, the cyclic acetal urethane acrylate monomer exists in either a metastable liquid state or a crystalline state at ambient conditions. Due to mobility restrictions, extremely poor polymerization kinetics and functional group conversions are typically achieved in solid state polymerizations. However, the solid-state photopolymerization of a cyclic acetal urethane acrylate results in nearly identical polymerization rates and ultimately higher conversion in the crystalline state than in the liquid state under otherwise identical conditions. We conclude that the crystallization process occurs in such a manner as to template the acrylic double bonds in a structure that facilitates rapid, minimally activated propagation.

SELECTION OF CITATIONS
SEARCH DETAIL
...