Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Leukoc Biol ; 72(4): 718-26, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12377941

ABSTRACT

Polymorphonuclear leukocytes (PMN) respond to tumor necrosis factor (TNF) with a respiratory burst (RB) only after adherence to surfaces coated with extracellular matrix proteins such as fibronectin and fibrinogen (permissive substrates) but not with others such as laminin or collagen (nonpermissive substrates). As PMN adherence to both types of surfaces is dependent on beta(2) integrins, we investigated the molecular basis of the different metabolic response to TNF. In particular, we evaluated the relative role of each beta(2) integrin (alpha(L)beta(2), alpha(M)beta(2), and alpha(X)beta(2)) in adherence and O(2)(-) production of PMN residing on fibronectin- and laminin-coated surfaces, which were considered as models of permissive and nonpermissive surfaces, respectively. By using alpha chain-specific monoclonal antibodies (mAb), we show that alpha(M)beta(2) and alpha(X)beta(2) mediate adherence to fibronectin and laminin; alpha(L)beta(2) is not involved in adherence to laminin and has only a minimal contribution in adherence to fibronectin. Furthermore, production of O(2)(-) in response to TNF was induced by immobilized anti-alpha(L)beta(2) but not anti-alpha(M)beta(2) or anti-alpha(X)beta(2) mAb. A strong correlation was also found between expression of alpha(L)beta(2) and TNF-induced RB on fibronectin. Lastly, PMN responded to TNF on laminin with a RB after the inclusion of alpha(L)-specific mAb in the laminin coat. Thus, we conclude that TNF-induced RB by PMN residing on fibronectin is mediated by alpha(L)beta(2) and that alpha(M)beta(2) and alpha(X)beta(2) are likely to play an ancillary role to the signaling activity of alpha(L)beta(2) by facilitating its recruitment to sites of adherence. The nonpermissiveness of laminin appears to be a consequence of its inability to act as a ligand for alpha(L)beta(2).


Subject(s)
Lymphocyte Function-Associated Antigen-1/metabolism , Neutrophils/drug effects , Respiratory Burst , Tumor Necrosis Factor-alpha/pharmacology , Cell Adhesion , Cells, Cultured , Cross-Linking Reagents , Cytoskeleton/metabolism , Fibronectins/metabolism , Humans , Integrin alphaXbeta2/metabolism , Laminin/metabolism , Macrophage-1 Antigen/metabolism , Neutrophils/cytology , Neutrophils/metabolism , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...