Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Rehabil Res Clin Transl ; 4(3): 100217, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36123987

ABSTRACT

Objective: To (1) determine the level of agreement between symptom provocation and performance-based tests of vestibulo-ocular reflex (VOR) function after pediatric mild traumatic brain injury (mTBI) and (2) describe the level of symptom provocation induced by a VOR task in individuals with and without cervical findings. Design: Cross-sectional. Setting: This study was conducted at a tertiary care pediatric hospital. Participants: A total of 101 participants (N=101) aged 6-18 years within 3 weeks of mTBI diagnosis were included (54.5% female; mean age, 13.92±2.63 years; mean time since injury at assessment, 18.26±6.16 days). Interventions: None. Main Outcome Measures: Symptom provocation (Vestibular/Ocular Motor Screening tool), performance (clinician-observed VOR performance, head thrust test [HTT], computerized dynamic visual acuity test, video head impulse test), and cervical impairment (cervical flexion-rotation test, range of motion test, self-reported neck pain). Agreement was evaluated using Cohen's κ statistic. Results: No outcomes demonstrated agreement with symptom provocation (κ=-0.15 to 0.14). Fair agreement demonstrated between clinician-observed VOR performance and HTT (κ=0.32), with little to no agreement demonstrated between other measures. Proportions reporting test-induced dizziness and headache were greater among individuals with cervical findings (29.1%-41.8%) than without (2.3%-6.8%). Conclusions: Findings support that symptom provocation and performance-based tests measure different constructs and thus have distinct roles when assessing VOR function. Findings suggest results from measures of symptom provocation may be influenced by coexisting cervical impairments, underlining the value of assessing for cervical injury after pediatric mTBI.

2.
Front Neurol ; 13: 904593, 2022.
Article in English | MEDLINE | ID: mdl-35928133

ABSTRACT

Background: Impairments to oculomotor (OM) and vestibulo-ocular reflex (VOR) function following pediatric mTBI have been demonstrated but are poorly understood. Such impairments can be associated with more negative prognosis, affecting physical and mental wellbeing, emphasizing the need to more fully understand how these evolve. Objectives: to determine i) the extent to which performance on clinical and computerized tests of OM and VOR function varies over time in children and adolescents at 21 days, 3-, and 6-months post-mTBI; ii) the proportion of children and adolescents with mTBI presenting with abnormal scores on these tests at each timepoint. Design: Prospective longitudinal design. Setting: Tertiary care pediatric hospital. Participants: 36 participants with mTBI aged 6 to18. Procedures: Participants were assessed on a battery of OM and VOR tests within 21 days, at 3- and 6-months post injury. Outcome measures: Clinical measures: Vestibular/ocular motor screening tool (VOMS) (symptom provocation and performance); Computerized measures: reflexive saccade test (response latency), video head impulse test (VOR gain), and dynamic visual acuity test (LogMAR change). Analysis: Generalized estimating equations (parameter estimates and odd ratios) estimated the effect of time. Proportions above and below normal cut-off values were determined. Results: Our sample consisted of 52.8% females [mean age 13.98 (2.4) years, assessed on average 19.07 (8-33) days post-injury]. Older children performed better on visual motion sensitivity (OR 1.43, p = 0.03) and female participants worse on near point of convergence (OR 0.19, p = 0.03). Change over time (toward recovery) was demonstrated by VOMS overall symptom provocation (OR 9.90, p = 0.012), vertical smooth pursuit (OR 4.04, p = 0.03), voluntary saccade performance (OR 6.06, p = 0.005) and right VOR gain (0.068, p = 0.013). Version performance and VOR symptom provocation showed high abnormal proportions at initial assessment. Discussion: Results indicate impairments to the VOR pathway may be present and driving symptom provocation. Vertical smooth pursuit and saccade findings underline the need to include these tasks in test batteries to comprehensively assess the integrity of OM and vestibular systems post-mTBI. Implications: Findings demonstrate 1) added value in including symptom and performance-based measures in when OM and VOR assessments; 2) the relative stability of constructs measured beyond 3 months post mTBI.

3.
Brain Inj ; 35(12-13): 1496-1509, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34495773

ABSTRACT

Purpose:To identify the tests and tools used to evaluate vestibulo-ocular reflex (VOR) function after traumatic brain injury (TBI) in all age groups and across TBI severity.Methods: An electronic search was conducted to include relevant peer-reviewed literature published up to November 2019. Studies included those done with humans, of all ages, and had assessments of oculomotor and/or vestibulo-ocular function in TBI.Results: Of the articles selected (N = 48), 50% were published in 2018/2019. A majority targeted mild TBI, with equal focus on non-computerized versus computerized measures of VOR. Computerized assessment tools used were videonystagmography, dynamic visual acuity/gaze stability, rotary chair, and caloric irrigation. Non-computerized tests included the head thrust, dynamic visual acuity, gaze stability, head shaking nystagmus, rotary chair tests and the vestibular/oculomotor screening tool. High variability in administration protocols were identified. Namely: testing environment, distances/positioning/equipment used, active/passive state, procedures, rotation frequencies, and variables observed.Conclusions: There is a rapid growth of literature incorporating VOR tests in mild TBI but moderate and severe TBI continues to be under-represented. Determining how to pair a clinical test with a computerized tool and developing standardized protocols when administering tests will help in developing an optimal battery assessing the VOR in TBI.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnosis , Eye Movements , Humans , Reflex, Vestibulo-Ocular , Visual Acuity
4.
Neurochirurgie ; 67(3): 231-237, 2021 May.
Article in English | MEDLINE | ID: mdl-33482235

ABSTRACT

Mild traumatic brain injury (mTBI) is a prevalent injury which occurs across many populations, including children and adolescents, athletes, military personnel, and the elderly. mTBI can result in various subjective symptoms and clinical deficits, such as abnormalities to the vestibulo-ocular reflex (VOR). Over 50% of individuals with mTBI are reported to have VOR abnormalities, which strongly contribute to feelings of dizziness and unsteadiness. Dizziness is a strong predictor for prolonged recovery following mTBI and is additionally linked with mental health difficulties and functional limitations affecting likelihood of return to work. Early diagnosis, and subsequent treatment, of VOR deficits following mTBI may greatly improve recovery outcomes and a patient's quality of life, but a thorough comprehension of the related pathophysiology is necessary to understand the assessments used to diagnose VOR abnormalities. Therefore, the purpose of this article is i) provide readers with an introduction on the VOR physiology to facilitate understanding about mTBI-related abnormalities, and ii) to discuss current assessments that are commonly used to measure VOR function following mTBI. As the VOR and oculomotor (OM) systems are heavily linked and often work in tandem, discussion of the relevant aspects of the OM system is also provided.


Subject(s)
Brain Concussion/physiopathology , Reflex, Vestibulo-Ocular , Animals , Brain Concussion/complications , Dizziness/etiology , Humans , Ophthalmoplegia/etiology , Ophthalmoplegia/physiopathology , Vertigo/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...