Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 17: 156, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26925977

ABSTRACT

BACKGROUND: The potential for alternative plant protein sources to replace limited marine ingredients in fish feeds is important for the future of the fish farming industry. However, plant ingredients in fish feeds contain antinutritional factors (ANFs) that can promote gut inflammation (enteritis) and compromise fish health. It is unknown whether enteritis induced by plant materials with notable differences in secondary metabolism is characterised by common or distinct gene expression patterns, and how using feeds with single vs mixed plant proteins may affect the gut transcriptome and fish performance. We used Atlantic salmon parr to investigate the transcriptome responses of distal gut to varying dietary levels (0-45%) of soy protein concentrate (SPC) and faba bean (Vicia faba) protein concentrate (BPC) following an 8-week feeding trial. Soybean meal (SBM) and fish meal (FM) were used as positive and negative controls for enteritis, respectively. Gene expression profiling was performed using a microarray platform developed and validated for Atlantic salmon. RESULTS: Different plant protein materials (SPC, BPC and SBM) generated substantially different gut gene expression profiles, with relatively few transcriptomic alterations (genes, pathways and GO terms) common for all plant proteins used. When SPC and BPC were simultaneously included in the diet, they induced less extensive alterations of gut transcriptome than diets with either SPC or BPC singly, probably due to reduced levels of individual ANFs. The mixed plant protein diets were also associated with improved body composition of fish relative to the single plant protein diets, which may provide evidence for a link between the magnitude of changes in gut transcriptome and whole-animal performance. CONCLUSIONS: Our results indicate that gut transcriptomic profiling provides a useful tool for testing the applicability of alternative protein sources for aquaculture feeds and designing diets with reduced impact of ANFs on fish health. Ultimately, understanding diet-gut interactions and intestinal homeostasis in farmed fish is important to maximise performance and to ensure that aquaculture continues to be a sustainable source of food for a growing world population.


Subject(s)
Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Plant Proteins, Dietary/chemistry , Salmo salar/metabolism , Transcriptome , Animals , Aquaculture , Gene Expression Profiling , Intestinal Mucosa/metabolism , Phenotype , Glycine max/chemistry , Vicia faba/chemistry
2.
Article in English | MEDLINE | ID: mdl-26280368

ABSTRACT

The production of carnivorous fish such as Atlantic salmon (Salmo salar) is dependent on the availability of high quality proteins for feed formulations. For a number of nutritional, strategic and economic reasons, the use of plant proteins has steadily increased over the years, however a major limitation is associated with the presence of anti-nutritional factors and the nutritional profile of the protein concentrate. Investigating novel raw materials involves understanding the physiological consequences associated with the dietary inclusion of protein concentrates. The primary aim of the present study was to assess the metabolic response of salmon to increasing inclusion of air-classified faba bean protein concentrate (BPC) in feeds as a replacement for soy protein concentrate (SPC). Specifically, we tested treatments with identical contents of fishmeal (222.4gkg(-1)) and progressively higher inclusion of BPC (0gkg(-1), 111.8gkg(-1), 223.6gkg(-1), 335.4gkg(-1), 447.2gkg(-1)) substituting SPC. This study demonstrated a dose-dependent metabolic response to a plant ingredient and was the first to compare the nutrigenomic transcriptional responses after substitution of terrestrial feed ingredients such as BPC and SPC without withdrawal of marine ingredients. It was found that after eight weeks a major physiological response in liver was only evident above 335.4gkg(-1) BPC and included decreased expression of metabolic pathways, and increased expression of genes regulating transcription and translation processes and the innate immune response. Furthermore, we showed that the nutritional stress caused by BPC resembled, at least at hepatic transcriptional level, that caused by soybean meal (included as a positive control in our experimental design). The outcomes of the present study suggested that Atlantic salmon parr might efficiently utilize moderate substitution of dietary SPC with BPC, with the optimum inclusion level being around 120gkg(-1)in the type of feeds tested here.


Subject(s)
Animal Feed/analysis , Dietary Proteins/metabolism , Fish Proteins/genetics , Liver/physiology , Salmo salar/genetics , Transcriptome , Vicia faba/metabolism , Animal Nutritional Physiological Phenomena , Animals , Diet , Fish Proteins/metabolism , Fisheries , Liver/metabolism , Plant Proteins/metabolism , Proteomics , Salmo salar/physiology , Glycine max/metabolism
3.
Lipids ; 38(7): 723-32, 2003 Jul.
Article in English | MEDLINE | ID: mdl-14506835

ABSTRACT

Fatty acyl desaturase activities, involved in the conversion of the C18 EFA 18:2n-6 and 18:3n-3 to the highly unsaturated fatty acids (HUFA) 20:4n-6, 20:5n-3, and 22:6n-3, are known to be under nutritional regulation. Specifically, the activity of the desaturation/elongation pathway is depressed when animals, including fish, are fed fish oils rich in n-3 HUFA compared to animals fed vegetable oils rich in C18 EFA. The primary aims of the present study were (i) to establish the relative importance of product inhibition (n-3 HUFA) vs. increased substrate concentration (C18 EFA) and (ii) to determine whether 18:2n-6 and 18:3n-3 differ in their effects on the hepatic fatty acyl desaturation/elongation pathway in Atlantic salmon (Salmo salar). Smolts were fed 10 experimental diets containing blends of two vegetable oils, linseed (LO) and rapeseed oil (RO), and fish oil (FO) in a triangular mixture design for 50 wk. Fish were sampled after 32 and 50 wk, lipid and FA composition of liver determined, fatty acyl desaturation/elongation activity estimated in hepatocytes using [1-14C]18:3n-3 as substrate, and the data subjected to regression analyses. Dietary 18:2n-6 was positively correlated, and n-3 HUFA negatively correlated, with lipid content of liver. Dietary 20:5n-3 and 22:6n-3 were positively correlated with liver FA with a slope greater than unity suggesting relative retention and deposition of these HUFA. In contrast, dietary 18:2n-6 and 18:3n-3 were positively correlated with liver FA with a slope of less than unity suggesting metabolism via beta-oxidation and/or desaturation/elongation. Consistent with this, fatty acyl desaturation/elongation in hepatocytes was significantly increased by feeding diets containing vegetable oils. Dietary 20:5n-3 and 22:6n-3 levels were negatively correlated with hepatocyte fatty acyl desaturation. At 32 wk, 18:2n-6 but not 18:3n-3 was positively correlated with hepatocyte fatty acyl desaturation, whereas the reverse was true at 50 wk. The data indicate that both feedback inhibition through increased n-3 HUFA and decreased C18 fatty acyl substrate concentration are probably important in determining the level of hepatocyte fatty acyl desaturation and that 18:2n-6 and 18:3n-3 may differ in their effects on this pathway.


Subject(s)
Dietary Fats, Unsaturated/administration & dosage , Fatty Acids/chemistry , Fatty Acids/metabolism , Liver/metabolism , Plant Oils/administration & dosage , Salmo salar/metabolism , Animal Feed/analysis , Animals , Fatty Acid Desaturases/metabolism , Hepatocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...