Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Res Sq ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38826214

ABSTRACT

Damage from ice and potential toxicity of ice-inhibiting cryoprotective agents (CPAs) are key issues in assisted reproduction of humans, domestic and research animals, and endangered species using cryopreserved oocytes and embryos. The nature of ice formed in bovine oocytes (similar in size to oocytes of humans and most other mammals) after rapid cooling and during rapid warming were examined using synchrotron-based time-resolved x-ray diffraction. Using cooling rates, warming rates and CPA concentrations of current practice, oocytes show no ice after cooling but always develop large ice fractions - consistent with crystallization of most free water - during warming, so most ice-related damage must occur during warming. The detailed behavior of ice at warming depended on the nature of ice formed during cooling. Increasing cooling rates allows oocytes soaked as in current practice to remain essentially ice free during both cooling and warming. Much larger convective warming rates are demonstrated and will allow routine ice-free cryopreservation with smaller CPA concentrations. These results clarify the roles of cooling, warming, and CPA concentration in generating ice in oocytes and establish the structure and grain size of ice formed. Ice formation can be eliminated as a factor affecting post-thaw oocyte viability and development in many species, improving outcomes and allowing other deleterious effects of the cryopreservation cycle to be independently studied.

2.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014098

ABSTRACT

Damage from ice and potential toxicity of ice-inhibiting cryoprotective agents (CPAs) are key issues in assisted reproduction using cryopreserved oocytes and embryos. We use synchrotron-based time-resolved x-ray diffraction and tools from protein cryocrystallography to characterize ice formation within bovine oocytes after cooling at rates between ∼1000 °C/min and ∼600,000°C /min and during warming at rates between 20,000 and 150,000 °C /min. Maximum crystalline ice diffraction intensity, maximum ice volume, and maximum ice grain size are always observed during warming. All decrease with increasing CPA concentration, consistent with the decreasing free water fraction. With the cooling rates, warming rates and CPA concentrations of current practice, oocytes may show no ice after cooling but always develop substantial ice fractions on warming, and modestly reducing CPA concentrations causes substantial ice to form during cooling. With much larger cooling and warming rates achieved using cryocrystallography tools, oocytes soaked as in current practice remain essentially ice free during both cooling and warming, and when soaked in half-strength CPA solution oocytes remain ice free after cooling and develop small grain ice during warming. These results clarify the roles of cooling, warming, and CPA concentration in generating ice in oocytes, establish the character of ice formed, and suggest that substantial further improvements in warming rates are feasible. Ice formation can be eliminated as a factor affecting post-thaw oocyte viability and development, allowing other deleterious effects of the cryopreservation cycle to be studied, and osmotic stress and CPA toxicity reduced. Significance Statement: Cryopreservation of oocytes and embryos is critical in assisted reproduction of humans and domestic animals and in preservation of endangered species. Success rates are limited by damage from crystalline ice, toxicity of cryoprotective agents (CPAs), and damage from osmotic stress. Time-resolved x-ray diffraction of bovine oocytes shows that ice forms much more readily during warming than during cooling, that maximum ice fractions always occur during warming, and that the tools and large CPA concentrations of current protocols can at best only prevent ice formation during cooling. Using tools from cryocrystallography that give dramatically larger cooling and warming rates, ice formation can be completely eliminated and required CPA concentrations substantially reduced, expanding the scope for species-specific optimization of post-thaw reproductive outcomes.

3.
Theriogenology ; 211: 19-27, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37556931

ABSTRACT

Direct-transfer slow-cooling cryopreservation is a widely used method for bovine embryo cryopreservation. However, the transfer of cryopreserved embryos is associated with reduced pregnancy rates. Rho-associated coiled-coil containing kinase inhibitor (ROCKi) has shown promise in improving the viability of post-warmed vitrified bovine embryos. Our objective was to investigate the effects of ROCKi treatment prior to slow-cooling or after cryopreservation on embryo viability. In vitro produced bovine embryos (n = 571) were randomly assigned to one of five groups: No-cryopreservation control group (NC-C), C-C group were cryopreserved by slow-rate cooling without ROCKi at any point, R-C group were incubated with ROCKi for 2 h before cryopreservation, C-R group were not exposed to ROCKi prior to cryopreservation but were cultured with ROCKi after cryopreservation, and R-R group were exposed to ROCKi before and after cryopreservation. Treatment group was significantly associated with blastocoel re-expansion, hatching, and degeneration (P < 0.0001). Blastocoel re-expansion rates were lower (P < 0.05) in the C-C (75.2 ± 4.2%) and R-C (85.2 ± 4.7%) groups compared with the NC-C (99.0 ± 0.7%), C-R (94.7 ± 2.6%) and the R-R (94.5 ± 2.9%) groups. The median time to re-expansion was significantly slowest in the C-C group (650, 560-915 min), followed by the R-C group (538, 421-611 min), then the C-R and R-R groups were similar (291, 261-361 and 321, 271-371 min) and the NC-C group was the fastest (196, 161-230 min) (P < 0.05). Similarly, the post-thaw hatching rate was lower, and the median time to hatching slower in the C-C (58.1 ± 7.0%, 2,033, 1634-2820 min) and R-C (65.7 ± 6.9%, 1,853, 1494-2356 min) groups compared with the NC-C (81.7 ± 6.0%, 1,309, 1084-1514 min), C-R (77.2 ± 6.5%, 1,384, 1013-1754 min) and R-R (82.0 ± 5.3%, 1,209, 943-1424 min) groups. ROCKi supplementation after cryopreservation resulted in fewer degenerated embryos (C-R = 8.9 ± 2.8%, and R-R 7.1 ± 2.8%) compared to the C-C (26.8 ± 4.3%) and R-C (17.9 ± 5.7%) groups. Exposure to ROCKi both before cryopreservation and after-cryopreservation yielded the best outcomes, similar to NC-C control group without cryopreservation, and significantly better than the C-C control group without supplements. Exposure to ROCKi after cryopreservation demonstrated greater benefits compared to exposure before cryopreservation alone. These findings suggest that ROCKi can potentially enhance cryosurvival of bovine embryos.


Subject(s)
Fertilization in Vitro , rho-Associated Kinases , Pregnancy , Female , Animals , Cattle , Fertilization in Vitro/veterinary , Cryopreservation/veterinary , Cryopreservation/methods , Blastocyst , Vitrification
SELECTION OF CITATIONS
SEARCH DETAIL
...