Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JAMIA Open ; 4(3): ooab057, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34350392

ABSTRACT

Physiological data, such as heart rate and blood pressure, are critical to clinical decision-making in the intensive care unit (ICU). Vital signs data, which are available from electronic health records, can be used to diagnose and predict important clinical outcomes; While there have been some reports on the data quality of nurse-verified vital sign data, little has been reported on the data quality of higher frequency time-series vital signs acquired in ICUs, that would enable such predictive modeling. In this study, we assessed the data quality issues, defined as the completeness, accuracy, and timeliness, of minute-by-minute time series vital signs data within the MIMIC-III data set, captured from 16009 patient-ICU stays and corresponding to 9410 unique adult patients. We measured data quality of four time-series vital signs data streams in the MIMIC-III data set: heart rate (HR), respiratory rate (RR), blood oxygen saturation (SpO2), and arterial blood pressure (ABP). Approximately, 30% of patient-ICU stays did not have at least 1 min of data during the time-frame of the ICU stay for HR, RR, and SpO2. The percentage of patient-ICU stays that did not have at least 1 min of ABP data was ∼56%. We observed ∼80% coverage of the total duration of the ICU stay for HR, RR, and SpO2. Finally, only 12.5%%, 9.9%, 7.5%, and 4.4% of ICU lengths of stay had ≥ 99% data available for HR, RR, SpO2, and ABP, respectively, that would meet the three data quality requirements we looked into in this study. Our findings on data completeness, accuracy, and timeliness have important implications for data scientists and informatics researchers who use time series vital signs data to develop predictive models of ICU outcomes.

2.
eNeuro ; 2(6)2015.
Article in English | MEDLINE | ID: mdl-26693178

ABSTRACT

The cerebellum receives extensive disynaptic input from the neocortex via the basal pontine nuclei, the neurons of which send mossy fiber (MF) axons to the granule cell layer of the contralateral cerebellar hemisphere. Although this cortico-cerebellar circuit has been implicated in tasks such as sensory discrimination and motor learning, little is known about the potential role of MF morphological plasticity in the function of the cerebellar granule cell layer. To address this issue, we labeled MFs with EGFP via viral infection of the basal pons in adult rats and performed in vivo two-photon imaging of MFs in Crus I/II of the cerebellar hemisphere over a period of several weeks. Following the acquisition of baseline images, animals were housed in control, enriched, or deprived sensory environments. Morphological dynamics were assessed by tracing MF axons and their terminals, and by tracking the stability of filopodia arising from MF terminal rosettes. MF axons and terminals were found to be remarkably stable. Parameters derived neither from measurements of axonal arbor geometry nor from the morphology of individual rosettes and their filopodial extensions significantly changed under control conditions over 4 weeks of imaging. Increasing whisker stimulation by manipulating the sensory environment or decreasing such stimulation by whisker trimming also failed to alter MF structure. Our studies indicate that pontine MF axons projecting to Crus I/II in adult rats do not undergo significant structural rearrangements over the course of weeks, and that this stability is not altered by the sustained manipulation of whisker sensorimotor experience.


Subject(s)
Cerebellum/physiology , Nerve Fibers/physiology , Neural Pathways/cytology , Pons/cytology , Aging , Animals , Axons/physiology , Male , Rats, Long-Evans , Somatosensory Cortex/physiology , Synapses/physiology , Vibrissae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...