Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Trop Med Hyg ; 92(3): 583-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25510713

ABSTRACT

Giardia duodenalis is one of the most commonly identified parasites in stool samples. Although relatively easy to treat, giardiasis can be difficult to detect as it presents similar to other diarrheal diseases. Here, we present a recombinase polymerase amplification-based Giardia (RPAG) assay to detect the presence of Giardia in stool samples. The RPAG assay was characterized on the bench top using stool samples spiked with Giardia cysts where it showed a limit-of-detection nearly as low as the gold standard polymerase chain reaction assay. The RPAG assay was then tested in the highlands of Peru on 104 stool samples collected from the surrounding communities where it showed 73% sensitivity and 95% specificity against a polymerase chain reaction and microscopy composite gold standard. Further improvements in clinical sensitivity will be needed for the RPAG assay to have clinical relevance.


Subject(s)
Feces/parasitology , Giardia lamblia/isolation & purification , Giardiasis/diagnosis , Polymerase Chain Reaction/methods , Recombinases/metabolism , Giardiasis/epidemiology , Humans , Peru/epidemiology , Recombinases/chemistry , Sensitivity and Specificity
2.
PLoS One ; 9(11): e112146, 2014.
Article in English | MEDLINE | ID: mdl-25372030

ABSTRACT

The development of isothermal amplification platforms for nucleic acid detection has the potential to increase access to molecular diagnostics in low resource settings; however, simple, low-cost methods for heating samples are required to perform reactions. In this study, we demonstrated that human body heat may be harnessed to incubate recombinase polymerase amplification (RPA) reactions for isothermal amplification of HIV-1 DNA. After measuring the temperature of mock reactions at 4 body locations, the axilla was chosen as the ideal site for comfortable, convenient incubation. Using commonly available materials, 3 methods for securing RPA reactions to the body were characterized. Finally, RPA reactions were incubated using body heat while control RPA reactions were incubated in a heat block. At room temperature, all reactions with 10 copies of HIV-1 DNA and 90% of reactions with 100 copies of HIV-1 DNA tested positive when incubated with body heat. In a cold room with an ambient temperature of 10 degrees Celsius, all reactions containing 10 copies or 100 copies of HIV-1 DNA tested positive when incubated with body heat. These results suggest that human body heat may provide an extremely low-cost solution for incubating RPA reactions in low resource settings.


Subject(s)
Body Temperature , DNA, Viral/chemistry , HIV-1/chemistry , Nucleic Acid Amplification Techniques/methods , DNA, Viral/genetics , HIV-1/genetics , Humans
3.
Anal Chem ; 86(12): 5615-9, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24873435

ABSTRACT

Although recombinase polymerase amplification (RPA) has many advantages for the detection of pathogenic nucleic acids in point-of-care applications, RPA has not yet been implemented to quantify sample concentration using a standard curve. Here, we describe a real-time RPA assay with an internal positive control and an algorithm that analyzes real-time fluorescence data to quantify HIV-1 DNA. We show that DNA concentration and the onset of detectable amplification are correlated by an exponential standard curve. In a set of experiments in which the standard curve and algorithm were used to analyze and quantify additional DNA samples, the algorithm predicted an average concentration within 1 order of magnitude of the correct concentration for all HIV-1 DNA concentrations tested. These results suggest that quantitative RPA (qRPA) may serve as a powerful tool for quantifying nucleic acids and may be adapted for use in single-sample point-of-care diagnostic systems.


Subject(s)
DNA, Viral/analysis , HIV-1/genetics , Recombinases/metabolism , Algorithms , HIV Infections/diagnosis , Humans , Nucleic Acid Amplification Techniques/methods , Point-of-Care Systems
4.
Anal Chem ; 86(5): 2565-71, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24479858

ABSTRACT

Diarrheal diseases cause more morbidity and mortality around the world than human immunodeficiency virus (HIV), malaria, or tuberculosis. Given that effective treatment of persistent diarrheal illness requires knowledge of the causative organism, diagnostic tests are of paramount importance. The protozoan parasites of the genus Cryptosporidium are increasingly recognized to be responsible for a significant portion of diarrhea morbidity. We present a novel nucleic acid test to detect the presence of Cryptosporidium species in DNA extracted from stool samples. The assay uses the isothermal amplification technique recombinase polymerase amplification (RPA) to amplify trace amounts of pathogen DNA extracted from stool to detectable levels in 30 min; products are then detected visually on simple lateral flow strips. The RPA-based Cryptosporidium assay (RPAC assay) was developed and optimized using DNA from human stool samples spiked with pathogen. It was then tested using DNA extracted from the stool of infected mice where it correctly identified the presence or absence of 27 out of 28 stool samples. It was finally tested using DNA extracted from the stool of infected patients where it correctly identified the presence or absence of 21 out of 21 stool samples. The assay was integrated into a foldable, paper and plastic device that enables DNA amplification with only the use of pipets, pipet tips, and a heater. The performance of the integrated assay is comparable to or better than polymerase chain reaction (PCR), without requiring the use of thermal cycling equipment. This platform can easily be adapted to detect DNA from multiple pathogens.


Subject(s)
Cryptosporidiosis/diagnosis , Molecular Diagnostic Techniques/methods , Animals , Base Sequence , DNA Primers , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...