Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 142(21): 212434, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-26049454

ABSTRACT

The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system's Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.


Subject(s)
Bacteriochlorophylls/chemistry , Carotenoids/chemistry , Chromatium/chemistry , Energy Transfer , Light-Harvesting Protein Complexes/chemistry , Bacteriochlorophylls/metabolism , Carotenoids/metabolism , Chromatium/metabolism , Light-Harvesting Protein Complexes/metabolism , Spectrum Analysis
2.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 6): 808-13, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24915099

ABSTRACT

LH2 from the purple photosynthetic bacterium Marichromatium (formerly known as Chromatium) purpuratum is an integral membrane pigment-protein complex that is involved in harvesting light energy and transferring it to the LH1-RC `core' complex. The purified LH2 complex was crystallized using the sitting-drop vapour-diffusion method at 294 K. The crystals diffracted to a resolution of 6 Šusing synchrotron radiation and belonged to the tetragonal space group I4, with unit-cell parameters a=b=109.36, c=80.45 Å. The data appeared to be twinned, producing apparent diffraction symmetry I422. The tetragonal symmetry of the unit cell and diffraction for the crystals of the LH2 complex from this species reveal that this complex is an octamer.


Subject(s)
Light-Harvesting Protein Complexes/chemistry , Proteobacteria/chemistry , Crystallization , Crystallography, X-Ray
SELECTION OF CITATIONS
SEARCH DETAIL
...