Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(13): e2312172121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38502705

ABSTRACT

The endoplasmic reticulum (ER) forms an interconnected network of tubules stretching throughout the cell. Understanding how ER functionality relies on its structural organization is crucial for elucidating cellular vulnerability to ER perturbations, which have been implicated in several neuronal pathologies. One of the key functions of the ER is enabling Ca[Formula: see text] signaling by storing large quantities of this ion and releasing it into the cytoplasm in a spatiotemporally controlled manner. Through a combination of physical modeling and live-cell imaging, we demonstrate that alterations in ER shape significantly impact its ability to support efficient local Ca[Formula: see text] releases, due to hindered transport of luminal content within the ER. Our model reveals that rapid Ca[Formula: see text] release necessitates mobile luminal buffer proteins with moderate binding strength, moving through a well-connected network of ER tubules. These findings provide insight into the functional advantages of normal ER architecture, emphasizing its importance as a kinetically efficient intracellular Ca[Formula: see text] delivery system.


Subject(s)
Endoplasmic Reticulum , Signal Transduction , Endoplasmic Reticulum/metabolism , Neurons/metabolism , Calcium/metabolism , Calcium Signaling
2.
Acta Neuropathol Commun ; 8(1): 127, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32762772

ABSTRACT

Sandhoff disease (SD) is a lysosomal storage disease, caused by loss of ß-hexosaminidase (HEX) activity resulting in the accumulation of ganglioside GM2. There are shared features between SD and Parkinson's disease (PD). α-synuclein (aSYN) inclusions, the diagnostic hallmark sign of PD, are frequently found in the brain in SD patients and HEX knockout mice, and HEX activity is reduced in the substantia nigra in PD. In this study, we biochemically demonstrate that HEX deficiency in mice causes formation of high-molecular weight (HMW) aSYN and ubiquitin in the brain. As expected from HEX enzymatic function requirements, overexpression in vivo of HEXA and B combined, but not either of the subunits expressed alone, increased HEX activity as evidenced by histochemical assays. Biochemically, such HEX gene expression resulted in increased conversion of GM2 to its breakdown product GM3. In a neurodegenerative model of overexpression of aSYN in rats, increasing HEX activity by AAV6 gene transfer in the substantia nigra reduced aSYN embedding in lipid compartments and rescued dopaminergic neurons from degeneration. Overall, these data are consistent with a paradigm shift where lipid abnormalities are central to or preceding protein changes typically associated with PD.


Subject(s)
Dopaminergic Neurons/pathology , Gangliosides/metabolism , alpha-Synuclein/metabolism , beta-N-Acetylhexosaminidases/metabolism , Animals , Female , Lipids , Male , Mice , Mice, Inbred C57BL , Parkinson Disease/metabolism , Rats , Rats, Sprague-Dawley , Sandhoff Disease/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...