Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Org Biomol Chem ; 22(14): 2877-2890, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38525805

ABSTRACT

Oxidative stress and carbonyl stress resulting from the toxicity of small aldehydes are part of the detrimental mechanisms leading to neuronal cell loss involved in the progression of neurodegenerative diseases such as Alzheimer's disease. Polyunsaturated alkylated lipophenols represent a new class of hybrid molecules that combine the health benefits of anti-inflammatory omega-3 fatty acids with the anti-carbonyl and oxidative stress (anti-COS) properties of (poly)phenols in a single pharmacological entity. To investigate the therapeutic potential of quercetin-3-docosahexaenoic acid-7-isopropyl lipophenol in neurodegenerative diseases, three synthetic pathways using chemical or chemo-enzymatic strategies were developed to access milligram or gram scale quantities of this alkyl lipophenol. The protective effect of quercetin-3-DHA-7-iPr against cytotoxic concentrations of acrolein (a carbonyl stressor) was assessed in human SHSY-5Y neuroblastoma cells to underscore its ability to alleviate harmful mechanisms associated with carbonyl stress in the context of neurodegenerative diseases.


Subject(s)
Fatty Acids, Omega-3 , Neurodegenerative Diseases , Humans , Quercetin/pharmacology , Oxidative Stress , Fatty Acids, Omega-3/pharmacology , Docosahexaenoic Acids/pharmacology , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism
2.
Int J Pharm ; 651: 123740, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38145781

ABSTRACT

Drugs with properties against oxidative and carbonyl stresses are potential candidates to prevent dry age-related macular degeneration (Dry-AMD) and inherited Stargardt disease (STGD1). Previous studies have demonstrated the capacity of a new lipophenol drug: 3-O-DHA-7-O-isopropyl-quercetin (Q-IP-DHA) to protect ARPE19 and primary rat RPE cells respectively from A2E toxicity and under oxidative and carbonyl stress conditions. In this study, first, a new methodology has been developed to access gram scale of Q-IP-DHA. After classification of the lipophenol as BCS Class IV according to physico-chemical and biopharmaceutical properties, an intravenous formulation with micelles (M) and an oral formulation using lipid nanocapsules (LNC) were developed. M were formed with Kolliphor® HS 15 and saline solution 0.9 % (mean size of 16 nm, drug loading of 95 %). The oral formulation was optimized and successfully allowed the formation of LNC (25 nm, 96 %). The evaluation of the therapeutic potency of Q-IP-DHA was performed after IV administration of micelles loaded with Q-IP-DHA (M-Q-IP-DHA) at 30 mg/kg and after oral administration of LNC loaded with Q-IP-DHA (LNC-Q-IP-DHA) at 100 mg/kg in mice. Results demonstrated photoreceptor protection after induction of retinal degeneration by acute light stress making Q-IP-DHA a promising preventive candidate against dry-AMD and STGD1.


Subject(s)
Macular Degeneration , Nanocapsules , Mice , Rats , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Micelles , Macular Degeneration/drug therapy , Macular Degeneration/prevention & control , Oxidation-Reduction , Nanocapsules/chemistry , Retinal Pigment Epithelium , Oxidative Stress
3.
Pharmaceutics ; 14(5)2022 May 10.
Article in English | MEDLINE | ID: mdl-35631617

ABSTRACT

Dry age-related macular degeneration (Dry AMD) and Stargardt's disease (STGD1) are common eye diseases, characterized by oxidative and carbonyl stress (COS)-inducing photoreceptor degeneration and vision loss. Previous studies have demonstrated the protective effect of photoreceptors after the intravenous administration of a new lipophenol drug, phloroglucinol-isopropyl-DHA (IP-DHA). In this study, we developed an oral formulation of IP-DHA (BCS Class IV) relying on a self-nanoemulsifying drug delivery system (SNEDDS). SNEDDS, composed of Phosal® 53 MCT, Labrasol®, and Transcutol HP® at a ratio of 25/60/15 (w/w/w), led to a homogeneous nanoemulsion (NE) with a mean size of 53.5 ± 4.5 nm. The loading of IP-DHA in SNEDDS (SNEDDS-IP-DHA) was successful, with a percentage of IP-DHA of 99.7% in nanoemulsions. The in vivo study of the therapeutic potency of SNEDDS-IP-DHA after oral administration on mice demonstrated photoreceptor protection after the induction of retinal degeneration with acute light stress (73-80%) or chronic light stress (52-69%). Thus, SNEDDS formulation proved to increase the solubility of IP-DHA, improving its stability in intestinal media and allowing its passage through the intestinal barrier after oral force-fed administration, while maintaining its biological activity. Therefore, SNEDDS-IP-DHA is a promising future preventive treatment for dry AMD and STGD1.

4.
J Agric Food Chem ; 69(47): 14165-14175, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34797062

ABSTRACT

Recently, new bioactive compounds were identified in olive oil, lipophenols, which are composed of a fatty acid (FA) and a phenolic core, such as HT (HT-FA). However, their bioaccessibility remains unknown. Thus, the present study uncovers the impact of the separate phases of gastrointestinal digestion on the release and stability of HT-FAs from oily matrices under in vitro simulated conditions. Accordingly, it was found that the bioaccessibility of HT derivatives is largely dependent on the type of FA that esterifies HT, as well as the food matrix. Also, the generation of HT-FAs during intestinal digestion was observed, with pancreatin being the enzyme responsible, to a higher extent, for the de novo formation of lipophenolic derivatives. These findings prompt us to identify new applications to oily matrices and their byproducts as potential functional ingredients for the promotion of health, where the possible formation of new lipophenols during digestion should be taken into consideration.


Subject(s)
Fatty Acids , Plant Oils , Biological Availability , Digestion , Esters , Olive Oil
5.
Free Radic Biol Med ; 162: 367-382, 2021 01.
Article in English | MEDLINE | ID: mdl-33129975

ABSTRACT

Dry age-related macular degeneration and Stargardt disease undergo a known toxic mechanism caused by carbonyl and oxidative stresses (COS). This is responsible for accumulation in the retinal pigment epithelium (RPE) of A2E, a main toxic pyridinium bis-retinoid lipofuscin component. Previous studies have shown that carbonyl stress in retinal cells could be reduced by an alkyl-phloroglucinol-DHA conjugate (lipophenol). Here, we performed a rational design of different families of lipophenols to conserve anti-carbonyl stress activities and improve antioxidant properties. Five synthetic pathways leading to alkyl-(poly)phenol derivatives, with phloroglucinol, resveratrol, catechin and quercetin as the main backbone, linked to poly-unsaturated fatty acid, are presented. These lipophenols were evaluated in ARPE-19 cell line for their anti-COS properties and a structure-activity relationship study is proposed. Protection of ARPE-19 cells against A2E toxicity was assessed for the four best candidates. Finally, interesting anti-COS properties of the most promising quercetin lipophenol were confirmed in primary RPE cells.


Subject(s)
Macular Degeneration , Humans , Lipofuscin/metabolism , Macular Degeneration/drug therapy , Oxidative Stress , Retinal Pigment Epithelium/metabolism , Retinoids/metabolism
6.
PLoS One ; 15(9): e0238178, 2020.
Article in English | MEDLINE | ID: mdl-32946441

ABSTRACT

Mycobacterium abscessus (M. abscessus), a rapidly growing mycobacterium, is an emergent opportunistic pathogen responsible for chronic bronchopulmonary infections in individuals with respiratory diseases such as cystic fibrosis. Most treatments of M. abscessus pulmonary infections are poorly effective due to the intrinsic resistance of this bacteria against a broad range of antibiotics including anti-tuberculosis agents. Consequently, the number of drugs that are efficient against M. abscessus remains limited. In this context, 19 oxadiazolone (OX) derivatives have been investigated for their antibacterial activity against both the rough (R) and smooth (S) variants of M. abscessus. Several OXs impair extracellular M. abscessus growth with moderated minimal inhibitory concentrations (MIC), or act intracellularly by inhibiting M. abscessus growth inside infected macrophages with MIC values similar to those of imipenem. Such promising results prompted us to identify the potential target enzymes of the sole extra and intracellular inhibitor of M. abscessus growth, i.e., compound iBpPPOX, via activity-based protein profiling combined with mass spectrometry. This approach led to the identification of 21 potential protein candidates being mostly involved in M. abscessus lipid metabolism and/or in cell wall biosynthesis. Among them, the Ag85C protein has been confirmed as a vulnerable target of iBpPPOX. This study clearly emphasizes the potential of the OX derivatives to inhibit the extracellular and/or intracellular growth of M. abscessus by targeting various enzymes potentially involved in many physiological processes of this most drug-resistant mycobacterial species.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Mycobacterium abscessus/drug effects , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Animals , Extracellular Space/drug effects , Extracellular Space/microbiology , Intracellular Space/drug effects , Intracellular Space/microbiology , Mice , Microbial Sensitivity Tests , Mycobacterium abscessus/growth & development , RAW 264.7 Cells
7.
Exp Mol Med ; 52(7): 1090-1101, 2020 07.
Article in English | MEDLINE | ID: mdl-32641711

ABSTRACT

Environmental light has deleterious effects on the outer retina in human retinopathies, such as ABCA4-related Stargardt's disease and dry age-related macular degeneration. These effects involve carbonyl and oxidative stress, which contribute to retinal cell death and vision loss. Here, we used an albino Abca4-/- mouse model, the outer retina of which shows susceptibility to acute photodamage, to test the protective efficacy of a new polyunsaturated fatty acid lipophenol derivative. Anatomical and functional analyses demonstrated that a single intravenous injection of isopropyl-phloroglucinol-DHA, termed IP-DHA, dose-dependently decreased light-induced photoreceptor degeneration and preserved visual sensitivity. This protective effect persisted for 3 months. IP-DHA did not affect the kinetics of the visual cycle in vivo or the activity of the RPE65 isomerase in vitro. Moreover, IP-DHA administered by oral gavage showed significant protection of photoreceptors against acute light damage. In conclusion, short-term tests in Abca4-deficient mice, following single-dose administration and light exposure, identify IP-DHA as a therapeutic agent for the prevention of retinal degeneration.


Subject(s)
Light , Phenols/therapeutic use , Retinal Diseases/drug therapy , Animals , Disease Models, Animal , Disease Susceptibility , Docosahexaenoic Acids/pharmacology , Electroretinography , Kinetics , Mice, Inbred C57BL , Mice, Knockout , Phenols/chemistry , Phloroglucinol/pharmacology , Retina/pathology , Retina/radiation effects , Retinal Degeneration/pathology , Retinal Diseases/pathology , Retinoids/metabolism , Tomography, Optical Coherence , cis-trans-Isomerases/metabolism
8.
J Agric Food Chem ; 68(29): 7789-7799, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32603105

ABSTRACT

Lipophenols have been stressed as an emerging class of functional compounds. However, little is known about their diversity. Thus, this study is aimed at developing a new method for the extraction, cleanup, and ultrahigh-performance liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (UHPLC-ESI-QqQ-MS/MS)-based analysis of the lipophenols derived from hydroxytyrosol (HT): α-linolenic (HT-ALA), linoleic acid (HT-LA), and oleic acid (HT-OA). The method validated provides reliable analytical data and practical applications. It was applied to an array of oily (extra virgin olive oil, refined olive oil, flaxseed oil, grapeseed oil, and margarine) and aqueous (pineapple juice) matrices, nonfortified and fortified with HT. Also, the present work reported the formation of fatty acid esters of HT (HT-FAs) that seem to be closely dependent on the fatty acid profile of the food matrix, encouraging the further exploration of the theoretical basis for the generation of HT-FAs, as well as their contribution to the healthy attributions of plant-based foods.


Subject(s)
Fatty Acids/chemistry , Food, Fortified/analysis , Phenylethyl Alcohol/analogs & derivatives , Plant Oils/chemistry , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Fatty Acids/pharmacology , Humans , Lipidomics , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/pharmacology , Plant Oils/pharmacology , Tandem Mass Spectrometry
9.
J Cell Mol Med ; 24(9): 5057-5069, 2020 05.
Article in English | MEDLINE | ID: mdl-32212312

ABSTRACT

All-trans-retinal (atRAL) is a highly reactive carbonyl specie, known for its reactivity on cellular phosphatidylethanolamine in photoreceptor. It is generated by photoisomerization of 11-cis-retinal chromophore linked to opsin by the Schiff's base reaction. In ABCA4-associated autosomal recessive Stargardt macular dystrophy, atRAL results in carbonyl and oxidative stress, which leads to bisretinoid A2E, accumulation in the retinal pigment epithelium (RPE). This A2E-accumulation presents as lipofuscin fluorescent pigment, and its photooxidation causes subsequent damage. Here we describe protection against a lethal dose of atRAL in both photoreceptors and RPE in primary cultures by a lipidic polyphenol derivative, an isopropyl-phloroglucinol linked to DHA, referred to as IP-DHA. Next, we addressed the cellular and molecular defence mechanisms in commonly used human ARPE-19 cells. We determined that both polyunsaturated fatty acid and isopropyl substituents bond to phloroglucinol are essential to confer the highest protection. IP-DHA responds rapidly against the toxicity of atRAL and its protective effect persists. This healthy effect of IP-DHA applies to the mitochondrial respiration. IP-DHA also rescues RPE cells subjected to the toxic effects of A2E after blue light exposure. Together, our findings suggest that the beneficial role of IP-DHA in retinal cells involves both anti-carbonyl and anti-oxidative capacities.


Subject(s)
Dehydroepiandrosterone/pharmacology , Phloroglucinol/pharmacology , Retinal Pigment Epithelium/drug effects , Retinaldehyde/toxicity , Animals , Antioxidants/pharmacology , Catalase/metabolism , Cell Line , Cell Survival , Humans , Lipofuscin/chemistry , Mice , Mitochondria/metabolism , Neurons/metabolism , Oxidative Stress/drug effects , Oxygen/chemistry , Oxygen Consumption , Phenol/chemistry , Phloroglucinol/chemistry , Pigmentation , Protective Agents/pharmacology , Rats , Reactive Oxygen Species , Retinal Pigment Epithelium/metabolism , Retinoids/metabolism , Structure-Activity Relationship
10.
Neurochem Res ; 45(5): 1007-1019, 2020 May.
Article in English | MEDLINE | ID: mdl-32088804

ABSTRACT

Photochemical and oxidative damages in retinal pigment epithelial (RPE) cells are key events in the pathogenesis of age-related macular degeneration. Polyunsaturated fatty acids (PUFA) and carotenoids are rich in retinal cells, and under oxidative stress leads to oxidation and release lipid mediators. We evaluated the impact of carotenoids (lutein, zeaxanthin) and docosahexaenoic acid (DHA) supplementation on RPE cells under oxidative stress. ARPE-19 cells were exposed to H2O2 after pre-treatment with lutein, zeaxanthin, DHA, lutein + zeaxanthin or lutein + zeaxanthin with DHA. The data showed H2O2 reduced cell viability and DHA content, while promoted catalase activity and certain oxidized PUFA products. Treatment with DHA enhanced omega-3 PUFA enzymatic oxidation namely, anti-inflammatory mediators such as hydroxy-DHA, resolvins and neuroprotection compared to control; the effects were not influenced by the carotenoids. Omega-6 PUFA oxidation, namely pro-inflammatory HETE (5-, 9-, 12 and 20-HETE), and isoprostanes (5- and 15-F2t-IsoP and 4-F3t-IsoP) were reduced by lutein + zeaxanthin while the addition of DHA did not further reduce these effects. We observed transcriptional regulation of 5-lipoxygenase by DHA and GPx1 and NEFEL2 by the carotenoids that potentially resulted in decreased HETEs and glutathione respectively. 4-HNE was not affected by the treatments but 4-HHE was reduced by lutein + zeaxanthin with and without DHA. To conclude, carotenoids and DHA appeared to regulate inflammatory lipid mediators while the carotenoids also showed benefits in reducing non-enzymatic oxidation of omega-6 PUFA.


Subject(s)
Docosahexaenoic Acids/administration & dosage , Fatty Acids, Unsaturated/antagonists & inhibitors , Hydrogen Peroxide/toxicity , Lutein/administration & dosage , Oxidative Stress/drug effects , Retinal Pigment Epithelium/drug effects , Zeaxanthins/administration & dosage , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Drug Combinations , Fatty Acids, Unsaturated/metabolism , Humans , Oxidation-Reduction/drug effects , Oxidative Stress/physiology , Retinal Pigment Epithelium/metabolism
11.
Antioxidants (Basel) ; 8(10)2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31581525

ABSTRACT

Oxidative stress plays a crucial role in developing and accelerating retinal diseases including age-related macular degeneration (AMD). Docosahexaenoic acid (DHA, C22:6, n-3), the main lipid constituent of retinal epithelial cell membranes, is highly prone to radical and enzymatic oxidation leading to deleterious or beneficial metabolites for retinal tissue. To inhibit radical oxidation while preserving enzymatic metabolism, deuterium was incorporated at specific positions of DHA, resulting in D2-DHA when incorporated at position 6 and D4-DHA when incorporated at the 6,9 bis-allylic positions. Both derivatives were able to decrease DHAs' toxicity and free radical processes involved in lipid peroxidation, in ARPE-19 cells (Adult Retinal Pigment Epithelial cell line), under pro-oxidant conditions. Our positive results encouraged us to prepare lipophenolic-deuterated-DHA conjugates as possible drug candidates for AMD treatment. These novel derivatives proved efficient in limiting lipid peroxidation in ARPE-19 cells. Finally, we evaluated the underlying mechanisms and the enzymatic conversion of both deuterated DHA. While radical abstraction was affected at the deuterium incorporation sites, enzymatic conversion by the lipoxygenase 15s-LOX was not impacted. Our results suggest that site-specifically deuterated DHA could be used in the development of DHA conjugates for treatment of oxidative stress driven diseases, or as biological tools to study the roles, activities and mechanisms of DHA metabolites.

12.
Antioxidants (Basel) ; 7(12)2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30572579

ABSTRACT

Age-related macular degeneration (AMD) is a multifactorial pathology and its progression is exacerbated by oxidative stress. Oxidation and photo-oxidation reactions modify lipids in retinal cells, contribute to tissue injury, and lead to the formation of toxic adducts. In particular, autofluorescent pigments such as N-retinylidene-N-retinylethanolamine (A2E) accumulate as lipofuscin in retinal pigment epithelial cells, contribute to the production of additional reactive oxygen species (ROS), and lead to cell degeneration. In an effort to develop efficient antioxidants to reduce damage caused by lipid oxidation, various natural polyphenols were structurally modified to increase their lipophilicity (lipophenols). In this study, resveratrol, phloroglucinol, quercetin and catechin were selected and conjugated to various polyunsaturated fatty acids (PUFAs) using classical chemical strategies or enzymatic reactions. After screening for cytotoxicity, the capacity of the synthesized lipophenols to reduce ROS production was evaluated in ARPE-19 cells subjected to H2O2 treatment using a dichlorofluorescein diacetate probe. The positions of the PUFA on the polyphenol core appear to influence the antioxidant effect. In addition, two lipophenolic quercetin derivatives were evaluated to highlight their potency in protecting ARPE-19 cells against A2E photo-oxidation toxicity. Quercetin conjugated to linoleic or α-linolenic acid were promising lipophilic antioxidants, as they protected ARPE-19 cells from A2E-induced cell death more effectively than the parent polyphenol, quercetin.

13.
Biosci Rep ; 38(6)2018 12 21.
Article in English | MEDLINE | ID: mdl-30487163

ABSTRACT

Tuberculosis caused by Mycobacterium tuberculosis is currently one of the leading causes of death from an infectious agent. The main difficulties encountered in eradicating this bacteria are mainly related to (i) a very complex lipid composition of the bacillus cell wall, (ii) its ability to hide from the immune system inside the granulomas, and (iii) the increasing number of resistant strains. In this context, we were interested in the Rv0646c (lipGMTB ) gene located upstream to the mmaA cluster which is described as being crucial for the production of cell wall components and required for the bacilli adaptation and survival in mouse macrophages. Using biochemical experiments combined with the construction of deletion and overexpression mutant strains in Mycobacterium smegmatis, we found that LipGMTB is a cytoplasmic membrane-associated enzyme that displays both phospholipase and thioesterase activities. Overproduction of LipGMTB decreases the glycopeptidolipids (GPL) level concomitantly to an increase in phosphatidylinositol (PI) which is the precursor of the PI mannoside (PIM), an essential lipid component of the bacterial cell wall. Conversely, deletion of the lipGMS gene in M. smegmatis leads to an overproduction of GPL, and subsequently decreases the strain susceptibility to various antibiotics. All these findings demonstrate that LipG is involved in cell envelope biosynthesis/remodeling, and consequently this enzyme may thus play an important role in mycobacterial physiology.


Subject(s)
Cell Wall/enzymology , Glycopeptides/genetics , Phospholipases/genetics , Tuberculosis/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Cell Wall/chemistry , Glycolipids/chemistry , Glycolipids/genetics , Glycopeptides/chemistry , Humans , Macrophages/enzymology , Mice , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/pathogenicity , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/pathogenicity , Phosphatidylinositols/chemistry , Phosphatidylinositols/metabolism , Phospholipases/chemistry , Tuberculosis/enzymology
14.
Bioorg Chem ; 81: 414-424, 2018 12.
Article in English | MEDLINE | ID: mdl-30212765

ABSTRACT

A set of 19 oxadiazolone (OX) derivatives have been investigated for their antimycobacterial activity against two pathogenic slow-growing mycobacteria, Mycobacterium marinum and Mycobacterium bovis BCG, and the avirulent Mycobacterium tuberculosis (M. tb) mc26230. The encouraging minimal inhibitory concentrations (MIC) values obtained prompted us to test them against virulent M. tb H37Rv growth either in broth medium or inside macrophages. The OX compounds displayed a diversity of action and were found to act either on extracellular M. tb growth only with moderated MIC50, or both intracellularly on infected macrophages as well as extracellularly on bacterial growth. Of interest, all OX derivatives exhibited very low toxicity towards host macrophages. Among the six potential OXs identified, HPOX, a selective inhibitor of extracellular M. tb growth, was selected and further used in a competitive labelling/enrichment assay against the activity-based probe Desthiobiotin-FP, in order to identify its putative target(s). This approach, combined with mass spectrometry, identified 18 potential candidates, all being serine or cysteine enzymes involved in M. tb lipid metabolism and/or in cell wall biosynthesis. Among them, Ag85A, CaeA, TesA, KasA and MetA have been reported as essential for in vitro growth of M. tb and/or its survival and persistence inside macrophages. Overall, our findings support the assumption that OX derivatives may represent a novel class of multi-target inhibitors leading to the arrest of M. tb growth through a cumulative inhibition of a large number of Ser- and Cys-containing enzymes involved in various important physiological processes.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Animals , Drug Design , Humans , Macrophages/drug effects , Macrophages/microbiology , Mice , Microbial Sensitivity Tests , Mycobacterium tuberculosis/growth & development , RAW 264.7 Cells , Tuberculosis/drug therapy
15.
Biosci Rep ; 38(4)2018 08 31.
Article in English | MEDLINE | ID: mdl-29921577

ABSTRACT

Gelatinolytic matrix metalloproteinases (MMP-2, -9) play a critical role not only in mammals physiology but also during inflammation and healing processes. The natural stilbenoid, resveratrol (RES), exhibits potent antioxidant effects, in a hormetic mode of action, and is known to inhibit MMP-9. However, RES administration exhibits major issues, including poor bioavailability and water solubility, hampering its potential therapeutic effect in vivo In the present study, we synthesized and evaluated five novel RES-lipid conjugates to increase their cell membrane penetration and improve their bioavailability. The best in vitro MMP-9 inhibitory activity of RES-lipids conjugates was observed with RES-linoleic acid (LA) (5 µM), when dissolved in a natural deep eutectic solvent (NADES), composed of an equimolar content of 1,2-propanediol:choline chloride (ChCl):water. The inhibition of MMP-9 expression by RES-LA in activated THP-1 monocytes, was, at least due to the deactivation of ERK1/2 and JNK1/2 MAP kinase signaling pathways. Moreover, RES-LA exhibited a strong effect protecting the TNF-α-induced exacerbated permeability in an HUVEC in vitro monolayer (by 81%) via the integrity protection of intercellular junction proteins from the MMP-9 activity. This effect was confirmed by using several complementary approaches including, the real-time monitoring of trans-endothelial electric resistance (TEER), the Transwell HUVEC permeability level, the microscopic examination of the platelet endothelial cell adhesion molecule-1 (CD31/PECAM-1) integrity as well as the fluorescence in intercellular spaces. Consequently, following this strong in vitro proof-of-concept, there is a need to test this promising RES-lipid derivative compound to control the pathological endothelial permeability in vivo.


Subject(s)
Endothelial Cells/drug effects , Linoleic Acid/chemistry , Linoleic Acid/pharmacology , Matrix Metalloproteinase Inhibitors/chemistry , Matrix Metalloproteinase Inhibitors/pharmacology , Resveratrol/analogs & derivatives , Resveratrol/pharmacology , Capillary Permeability/drug effects , Cell Line , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Matrix Metalloproteinase 9/metabolism
16.
Chem Res Toxicol ; 29(10): 1689-1698, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27588434

ABSTRACT

The effects of extra virgin olive oil (EVOO) and carbon tetrachloride (CCl4) induced oxidative stress in rats were determined by the generation of isoprostanoids. These are known to be robust biomarkers to evaluate nonenzymatic and free radical related oxidation. Other oxidative stress biomarkers such as hydroxyeicosatetraenoic acid products (HETEs) and cholesterol oxidation products (COPs) were also determined. The rodents received a control diet, high-fat diet (20% w/w) composed of extra virgin olive oil (EVOO), corn oil (CO), or lard, and high-fat diets with CCl4 insult throughout the experimental period. The EVOO diet was found to suppress the formation of isoprostanoids and COPs compared to that of the control. EVOO also had a high total phenolic content and antioxidant activity compared to those of CO and lard and may be contributed to by the hydroxytyrosol component conjugated to fatty acids (HT-FA). This is the first study to identify HT-FA in EVOO, and it was 4-fold higher than that of olive oil, whereas none was found in corn oil. Furthermore, the EVOO diet showed reduced liver lipid vesicles in CCl4 treated rats compared to that of the control. However, liver toxicity measurements of AST (aspartate transaminase) and ALT (alanine transaminase) activities showed augmentation with CCl4 treatment but were not alleviated by the diets given. Our findings suggest that EVOO is a daily functional food capable of enhancing the antioxidant system for liver protection; the effect is potentially attributed to the phenolic and lipophenolic (phenol conjugated by fatty acids) content.


Subject(s)
Cholesterol/metabolism , Fatty Acids, Unsaturated/metabolism , Liver/metabolism , Olive Oil/metabolism , Phenylethyl Alcohol/analogs & derivatives , Animals , Cholesterol/chemistry , Fatty Acids, Unsaturated/chemistry , Liver/chemistry , Male , Olive Oil/chemistry , Oxidation-Reduction , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/metabolism , Rats , Rats, Inbred F344
17.
J Cell Mol Med ; 20(9): 1651-63, 2016 09.
Article in English | MEDLINE | ID: mdl-27072643

ABSTRACT

Among retinal macular diseases, the juvenile recessive Stargardt disease and the age-related degenerative disease arise from carbonyl and oxidative stresses (COS). Both stresses originate from an accumulation of all-trans-retinal (atRAL) and are involved in bisretinoid formation by condensation of atRAL with phosphatidylethanolamine (carbonyl stress) in the photoreceptor and its transformation into lipofuscin bisretinoids (oxidative stress) in the retinal pigment epithelium (RPE). As atRAL and bisretinoid accumulation contribute to RPE and photoreceptor cell death, our goal is to select powerful chemical inhibitors of COS. Here, we describe that phloroglucinol, a natural phenolic compound having anti-COS properties, protects both rat RPE and mouse photoreceptor primary cultures from atRAL-induced cell death and reduces hydrogen peroxide (H2 O2 )-induced damage in RPE in a dose-dependent manner. Mechanistic analyses demonstrate that the protective effect encompasses decrease in atRAL-induced intracellular reactive oxygen species and free atRAL levels. Moreover, we show that phloroglucinol reacts with atRAL to form a chromene adduct which prevents bisretinoid A2E synthesis in vitro. Taken together, these data show that the protective effect of phloroglucinol correlates with its ability to trap atRAL and to prevent its further transformation into deleterious bisretinoids. Phloroglucinol might be a good basis to develop efficient therapeutic derivatives in the treatment of retinal macular diseases.


Subject(s)
Cytoprotection/drug effects , Phloroglucinol/pharmacology , Photoreceptor Cells, Vertebrate/metabolism , Protective Agents/pharmacology , Retinal Pigment Epithelium/pathology , Retinaldehyde/toxicity , Retinoids/metabolism , Animals , Benzopyrans/metabolism , Cell Death/drug effects , Chromatography, High Pressure Liquid , Hydrogen Peroxide/toxicity , Oxidative Stress , Proton Magnetic Resonance Spectroscopy , Rats, Long-Evans , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism
18.
Biochimie ; 120: 62-74, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26209925

ABSTRACT

Polyphenols and n-3 polyunsaturated fatty acids (PUFAs) are two classes of natural compounds, which have been highlighted in epidemiological studies for their health benefits. The biological activities of those two families of metabolites on oxidation, inflammation, cancer, cardiovascular and degenerative diseases have been reported in vitro and in vivo. On the other hand, chemical bonding between the two structures leading to n-3 lipophenol derivatives (or phenolipids) has been studied in numerous works over the last decade, and some examples could also be found from natural sources. Interest in lipophilization of phenolic structures is various and depends on the domain of interest: in food industry, the development of lipidic antioxidants could be performed to protect lipidic food matrix from oxidation. Whereas, on pharmaceutical purpose, increasing the lipophilicity of polar phenolic drugs could be performed to improve their pharmacological profile. Moreover, combining both therapeutic aspects of n-3 PUFAs and of polyphenols in a single lipophenolic molecule could also be envisaged. An overview of the synthesis and of the natural sources of n-3 lipophenols is presented here, in addition to their biological activities which point out in several cases the benefit of the conjugated derivatives.


Subject(s)
Cardiovascular Diseases , Fatty Acids, Omega-3 , Neoplasms , Polyphenols , Animals , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Fatty Acids, Omega-3/pharmacokinetics , Fatty Acids, Omega-3/therapeutic use , Humans , Inflammation/drug therapy , Inflammation/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Polyphenols/pharmacokinetics , Polyphenols/therapeutic use
19.
J Med Chem ; 57(11): 4876-88, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24818704

ABSTRACT

Tuberculosis remains a major cause of mortality and morbidity, killing each year more than one million people. Although the combined use of first line antibiotics (isoniazid, rifampicin, pyrazinamide, and ethambutol) is efficient to treat most patients, the rapid emergence of multidrug resistant strains of Mycobacterium tuberculosis stresses the need for alternative therapies. Mycobacterial transcriptional repressor EthR is a key player in the control of second-line drugs bioactivation such as ethionamide and has been shown to impair the sensitivity of the human pathogen Mycobacterium tuberculosis to this antibiotic. As a way to identify new potent ligands of this protein, we have developed fragment-based approaches. In the current study, we combined surface plasmon resonance assay, X-ray crystallography, and ligand efficiency driven design for the rapid discovery and optimization of new chemotypes of EthR ligands starting from a fragment. The design, synthesis, and in vitro and ex vivo activities of these compounds will be discussed.


Subject(s)
Antitubercular Agents/chemical synthesis , Bacterial Proteins/antagonists & inhibitors , Benzamides/chemical synthesis , Mycobacterium tuberculosis/drug effects , Repressor Proteins/antagonists & inhibitors , Thiazoles/chemical synthesis , Animals , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Benzamides/chemistry , Benzamides/pharmacology , Cell Line , Crystallography, X-Ray , Mice , Molecular Docking Simulation , Mycobacterium tuberculosis/metabolism , Protein Binding , Structure-Activity Relationship , Surface Plasmon Resonance , Thiazoles/chemistry , Thiazoles/pharmacology
20.
Anal Biochem ; 452: 54-66, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24561027

ABSTRACT

EthR is a mycobacterial repressor that limits the bioactivation of ethionamide, a commonly used anti-tuberculosis second-line drug. Several efforts have been deployed to identify EthR inhibitors abolishing the DNA-binding activity of the repressor. This led to the demonstration that stimulating the bioactivation of Eth through EthR inhibition could be an alternative way to fight Mycobacterium tuberculosis. We propose a new surface plasmon resonance (SPR) methodology to study the affinity between inhibitors and EthR. Interestingly, the binding between inhibitors and immobilized EthR produced a dose-dependent negative SPR signal. We demonstrate that this signal reveals the affinity of small molecules for the repressor. The affinity constants (K(D)) correlate with their capacity to inhibit the binding of EthR to DNA. We hypothesize that conformational changes in EthR during ligand interaction could be responsible for this SPR signal. Practically, this unconventional result opens perspectives onto the development of an SPR assay that would at the same time reveal structural changes in the target upon binding with an inhibitor and the binding constant of this interaction.


Subject(s)
Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , Surface Plasmon Resonance/methods , Biotinylation , Ligands , Mycobacterium tuberculosis , Repressor Proteins/chemistry , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...