Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38948822

ABSTRACT

PRMT1 plays many important roles in both normal and disease biology, thus understanding it's regulation is crucial. Herein, we report the role of p300-mediated acetylation at K228 in triggering PRMT1 degradation through FBXL17-mediated ubiquitination. Utilizing mass-spectrometry, cellular biochemistry, and genetic code-expansion technologies, we elucidate a crucial mechanism independent of PRMT1 transcript levels. These results underscore the significance of acetylation in governing protein stability and expand our understanding of PRMT1 homeostasis. By detailing the molecular interplay between acetylation and ubiquitination involved in PRMT1 degradation, this work contributes to broader efforts in deciphering post-translational mechanisms that influence protein homeostasis.

2.
Biochemistry ; 61(4): 217-227, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35073057

ABSTRACT

The strategic redesign of microbial biosynthetic pathways is a compelling route to access molecules of diverse structure and function in a potentially environmentally sustainable fashion. The promise of this approach hinges on an improved understanding of acyl carrier proteins (ACPs), which serve as central hubs in biosynthetic pathways. These small, flexible proteins mediate the transport of molecular building blocks and intermediates to enzymatic partners that extend and tailor the growing natural products. Past combinatorial biosynthesis efforts have failed due to incompatible ACP-enzyme pairings. Herein, we report the design of chimeric ACPs with features of the actinorhodin polyketide synthase ACP (ACT) and of the Escherichia coli fatty acid synthase (FAS) ACP (AcpP). We evaluate the ability of the chimeric ACPs to interact with the E. coli FAS ketosynthase FabF, which represents an interaction essential to building the carbon backbone of the synthase molecular output. Given that AcpP interacts with FabF but ACT does not, we sought to exchange modular features of ACT with AcpP to confer functionality with FabF. The interactions of chimeric ACPs with FabF were interrogated using sedimentation velocity experiments, surface plasmon resonance analyses, mechanism-based cross-linking assays, and molecular dynamics simulations. Results suggest that the residues guiding AcpP-FabF compatibility and ACT-FabF incompatibility may reside in the loop I, α-helix II region. These findings can inform the development of strategic secondary element swaps that expand the enzyme compatibility of ACPs across systems and therefore represent a critical step toward the strategic engineering of "un-natural" natural products.


Subject(s)
Acyl Carrier Protein/metabolism , Escherichia coli Proteins/metabolism , Fatty Acid Synthases/metabolism , Polyketide Synthases/metabolism , Acyl Carrier Protein/chemistry , Amino Acid Sequence , Chimera/metabolism , Escherichia coli/enzymology , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Fatty Acid Synthase, Type II/metabolism , Fatty Acid Synthases/chemistry , Fatty Acids/metabolism , Molecular Dynamics Simulation , Polyketide Synthases/chemistry , Polyketides/metabolism , Surface Plasmon Resonance/methods , Transferases (Other Substituted Phosphate Groups)/metabolism
3.
J Biol Chem ; 296: 100328, 2021.
Article in English | MEDLINE | ID: mdl-33493513

ABSTRACT

Type II polyketide synthases (PKSs) are protein assemblies, encoded by biosynthetic gene clusters in microorganisms, that manufacture structurally complex and pharmacologically relevant molecules. Acyl carrier proteins (ACPs) play a central role in biosynthesis by shuttling malonyl-based building blocks and polyketide intermediates to catalytic partners for chemical transformations. Because ACPs serve as central hubs in type II PKSs, they can also represent roadblocks to successfully engineering synthases capable of manufacturing 'unnatural natural products.' Therefore, understanding ACP conformational dynamics and protein interactions is essential to enable the strategic redesign of type II PKSs. However, the inherent flexibility and transience of ACP interactions pose challenges to gaining insight into ACP structure and function. In this review, we summarize how the application of chemical probes and molecular dynamic simulations has increased our understanding of the structure and function of type II PKS ACPs. We also share how integrating these advances in type II PKS ACP research with newfound access to key enzyme partners, such as the ketosynthase-chain length factor, sets the stage to unlock new biosynthetic potential.


Subject(s)
Acyl Carrier Protein/chemistry , Acyl Carrier Protein/metabolism , Polyketides/metabolism , Amino Acid Sequence , Biosynthetic Pathways , Molecular Probes/chemistry , Polyketide Synthases/chemistry , Polyketide Synthases/metabolism , Protein Binding , Protein Conformation , Sequence Homology, Amino Acid , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...