Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 92020 02 12.
Article in English | MEDLINE | ID: mdl-32048991

ABSTRACT

More than 30% of genes in higher eukaryotes are regulated by promoter-proximal pausing of RNA polymerase II (Pol II). Phosphorylation of Pol II CTD by positive transcription elongation factor b (P-TEFb) is a necessary precursor event that enables productive transcription elongation. The exact mechanism on how the sequestered P-TEFb is released from the 7SK snRNP complex and recruited to Pol II CTD remains unknown. In this report, we utilize mouse and human models to reveal methylphosphate capping enzyme (MePCE), a core component of the 7SK snRNP complex, as the cognate substrate for Jumonji domain-containing 6 (JMJD6)'s novel proteolytic function. Our evidences consist of a crystal structure of JMJD6 bound to methyl-arginine, enzymatic assays of JMJD6 cleaving MePCE in vivo and in vitro, binding assays, and downstream effects of Jmjd6 knockout and overexpression on Pol II CTD phosphorylation. We propose that JMJD6 assists bromodomain containing 4 (BRD4) to recruit P-TEFb to Pol II CTD by disrupting the 7SK snRNP complex.


In animals, an enzyme known as RNA polymerase II (Pol II for short) is a key element of the transcription process, whereby the genetic information contained in DNA is turned into messenger RNA molecules in the cells, which can then be translated to proteins. To perform this task, Pol II needs to be activated by a complex of proteins called P-TEFb; however, P-TEFb is usually found in an inactive form held by another group of proteins. Yet, it is unclear how P-TEFb is released and allowed to activate Pol II. Scientists have speculated that another protein called JMJD6 (Jumonji domain-containing 6) is important for P-TEFb to activate Pol II. Various roles for JMJD6 have been proposed, but its exact purpose remains unclear. Recently, two enzymes closely related to JMJD6 were found to be able to make precise cuts in other proteins; Lee, Liu et al. therefore wanted to test whether this is also true of JMJD6. Experiments using purified JMJD6 showed that it could make a cut in an enzyme called MePCE, which belongs to the group of proteins that hold P-TEFb in its inactive form. Lee, Liu et al. then tested the relationships between these proteins in living human and mouse cells. The levels of activated Pol II were lower in cells without JMJD6 and higher in those without MePCE. Together, the results suggest that JMJD6 cuts MePCE to release P-TEFb, which then activates Pol II. JMJD6 appears to know where to cut by following a specific pattern of elements in the structure of MePCE. When MePCE was mutated so that the pattern changed, JMJD6 was unable to cut it. These results suggest that JMJD6 and related enzymes belong to a new family of proteases, the molecular scissors that can cleave other proteins. The molecules that regulate transcription often are major drug targets, for example in the fight against cancer. Ultimately, understanding the role of JMJD6 might help to identify new avenues for cancer drug development.


Subject(s)
Methyltransferases/metabolism , Positive Transcriptional Elongation Factor B/metabolism , Receptors, Cell Surface/metabolism , Animals , Binding Sites , Blotting, Western , Gene Knockout Techniques , Mass Spectrometry , Mice , Protein Structure, Tertiary , RNA Polymerase II/metabolism , Receptors, Cell Surface/chemistry
2.
J Immunol ; 187(5): 2101-11, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21813769

ABSTRACT

Defective clearance of apoptotic cells has been shown in systemic lupus erythematosus (SLE) and is postulated to enhance autoimmune responses by increasing access to intracellular autoantigens. Until now, research has emphasized inherited rather than acquired impairment of apoptotic cell engulfment in the pathogenesis of SLE. In this study, we confirm previous results that efficient removal of apoptotic cells (efferocytosis) is bolstered in the presence of wild-type mouse serum, through the C3 deposition on the apoptotic cell surface. In contrast, sera from three mouse models of SLE, Mer(KD), MRL(lpr), and New Zealand Black/WF1 did not support and in fact actively inhibited apoptotic cell uptake. IgG autoantibodies were responsible for the inhibition, through the blockade of C3 recognition by macrophages. Consistent with this, IgG removal reversed the inhibitory activity within autoimmune serum, and purified autoimmune IgG blocked both the detection of C3 on apoptotic cells and C3-dependent efferocytosis. Sera from SLE patients demonstrated elevated anti-C3b IgG that blocked detection of C3 on apoptotic cells, activity that was not found in healthy controls or patients with rheumatoid arthritis, nor in mice prior to the onset of autoimmunity. We propose that the suppression of apoptotic cell disposal by Abs against deposited C3 may contribute to increasing severity and/or exacerbations in SLE.


Subject(s)
Apoptosis , Autoantibodies/immunology , Complement C3/immunology , Immunoglobulin G/immunology , Lupus Erythematosus, Systemic/immunology , Macrophages/immunology , Phagocytosis/immunology , Animals , Autoantigens/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Humans , Lupus Erythematosus, Systemic/pathology , Mice
3.
Curr Protoc Immunol ; Chapter 2: 2.15.1-2.15.23, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19347845

ABSTRACT

Methods to induce antigen-specific immune responses in mice using insect cells infected with recombinant baculoviruses are described in this unit. Although this vaccine strategy has been used to generate both antibody and T cell responses, it has been more thoroughly characterized for the peptide-specific cytotoxic T cell responses. Nonspecific responses to the vaccine vehicle are controlled for by vaccinating with insect cells infected with baculoviruses encoding irrelevant antigens or no antigen. The baculovirus-infected insect cells alone are an effective immune adjuvant to elicit antigen-specific T cells. Overall, immune responses generated using this approach are similar to those generated by more conventional vaccine strategies.


Subject(s)
Antigens/immunology , Baculoviridae/immunology , Insecta/immunology , Vaccination/methods , Vaccines , Adjuvants, Immunologic , Animals , Baculoviridae/genetics , Cell Culture Techniques , Gene Expression Profiling , Genes, MHC Class I/immunology , Genetic Engineering , Insecta/metabolism , Mice , Peptides/immunology , T-Lymphocytes/immunology , Vaccination/instrumentation
4.
Immunity ; 31(6): 897-908, 2009 Dec 18.
Article in English | MEDLINE | ID: mdl-20064448

ABSTRACT

T cells often alloreact with foreign human leukocyte antigens (HLA). Here we showed the LC13 T cell receptor (TCR), selected for recognition on self-HLA-B( *)0801 bound to a viral peptide, alloreacts with B44 allotypes (HLA-B( *)4402 and HLA-B( *)4405) bound to two different allopeptides. Despite extensive polymorphism between HLA-B( *)0801, HLA-B( *)4402, and HLA-B( *)4405 and the disparate sequences of the viral and allopeptides, the LC13 TCR engaged these peptide-HLA (pHLA) complexes identically, accommodating mimicry of the viral peptide by the allopeptide. The viral and allopeptides adopted similar conformations only after TCR ligation, revealing an induced-fit mechanism of molecular mimicry. The LC13 T cells did not alloreact against HLA-B( *)4403, and the single residue polymorphism between HLA-B( *)4402 and HLA-B( *)4403 affected the plasticity of the allopeptide, revealing that molecular mimicry was associated with TCR specificity. Accordingly, molecular mimicry that is HLA and peptide dependent is a mechanism for human T cell alloreactivity between disparate cognate and allogeneic pHLA complexes.


Subject(s)
Epstein-Barr Virus Nuclear Antigens/immunology , HLA-B Antigens/immunology , Molecular Mimicry/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Cell Line , HLA-B8 Antigen , Humans , Jurkat Cells , Lymphocyte Activation/immunology , Peptides/chemistry , Peptides/immunology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...