Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 27(12): 2684-2701, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33644944

ABSTRACT

Polar bears (Ursus maritimus) are experiencing loss of sea ice habitats used to access their marine mammal prey. Simultaneously, ocean warming is changing ecosystems that support marine mammal populations. The interactive effects of sea ice and prey are not well understood yet may explain spatial-temporal variation in the response of polar bears to sea ice loss. Here, we examined the potential combined effects of sea ice, seal body condition, and atmospheric circulation patterns on the body condition, recruitment, diet, and feeding probability of 469 polar bears captured in the Chukchi Sea, 2008-2017. The body condition of ringed seals (Pusa hispida), the primary prey of females and subadults, was related to dietary proportions of ringed seal, feeding probability, and the body condition of females and cubs. In contrast, adult males consumed more bearded seals (Erignathus barbatus) and exhibited better condition when bearded seal body condition was higher. The litter size, number of yearlings per adult female, and the condition of dependent young were higher following winters characterized by low Arctic Oscillation conditions, consistent with a growing number of studies. Body condition, recruitment, and feeding probability were either not associated or negatively associated with sea ice conditions, suggesting that, unlike some subpopulations, Chukchi Sea bears are not currently limited by sea ice availability. However, spring sea ice cover declined 2% per year during our study reaching levels not previously observed in the satellite record and resulting in the loss of polar bear hunting and seal pupping habitat. Our study suggests that the status of ice seal populations is likely an important factor that can either compound or mitigate the response of polar bears to sea ice loss over the short term. In the long term, neither polar bears nor their prey are likely robust to limitless loss of their sea ice habitat.


Subject(s)
Caniformia , Seals, Earless , Ursidae , Animals , Arctic Regions , Ecosystem , Female , Ice Cover , Male
2.
Ecol Evol ; 10(12): 5595-5616, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32607177

ABSTRACT

Continued Arctic warming and sea-ice loss will have important implications for the conservation of ringed seals, a highly ice-dependent species. A better understanding of their spatial ecology will help characterize emerging ecological trends and inform management decisions. We deployed satellite transmitters on ringed seals in the summers of 2011, 2014, and 2016 near Utqiagvik (formerly Barrow), Alaska, to monitor their movements, diving, and haul-out behavior. We present analyses of tracking and dive data provided by 17 seals that were tracked until at least January of the following year. Seals mostly ranged north of Utqiagvik in the Beaufort and Chukchi Seas during summer before moving into the southern Chukchi and Bering Seas during winter. In all seasons, ringed seals occupied a diversity of habitats and spatial distributions, from near shore and localized, to far offshore and wide-ranging in drifting sea ice. Continental shelf waters were occupied for >96% of tracking days, during which repetitive diving (suggestive of foraging) primarily to the seafloor was the most frequent activity. From mid-summer to early fall, 12 seals made ~1-week forays off-shelf to the deep Arctic Basin, most reaching the retreating pack-ice, where they spent most of their time hauled out. Diel activity patterns suggested greater allocation of foraging efforts to midday hours. Haul-out patterns were complementary, occurring mostly at night until April-May when midday hours were preferred. Ringed seals captured in 2011-concurrent with an unusual mortality event that affected all ice-seal species-differed morphologically and behaviorally from seals captured in other years. Speculations about the physiology of molting and its role in energetics, habitat use, and behavior are discussed; along with possible evidence of purported ringed seal ecotypes.

SELECTION OF CITATIONS
SEARCH DETAIL
...