Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
bioRxiv ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39026753

ABSTRACT

Therapeutic interventions targeting hepatic lipid metabolism in metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH) remain elusive. Using mass spectrometry-based stable isotope tracing and shotgun lipidomics, we established a novel link between ketogenesis and MASLD pathophysiology. Our findings show that mouse liver and primary hepatocytes consume ketone bodies to support fatty acid (FA) biosynthesis via both de novo lipogenesis (DNL) and FA elongation. Analysis of 13 C-labeled FAs in hepatocytes lacking mitochondrial D-ß-hydroxybutyrate dehydrogenase (BDH1) revealed a partial reliance on mitochondrial conversion of D-ßOHB to acetoacetate (AcAc) for cytoplasmic DNL contribution, whereas FA elongation from ketone bodies was fully dependent on cytosolic acetoacetyl-CoA synthetase (AACS). Ketone bodies were essential for polyunsaturated FA (PUFA) homeostasis in hepatocytes, as loss of AACS diminished both free and esterified PUFAs. Ketogenic insufficiency depleted liver PUFAs and increased triacylglycerols, mimicking human MASLD, suggesting that ketogenesis supports PUFA homeostasis, and may mitigate MASLD-MASH progression in humans.

2.
PLoS One ; 19(5): e0300037, 2024.
Article in English | MEDLINE | ID: mdl-38709787

ABSTRACT

Fatty acid esters of hydroxy fatty acid (FAHFA) are anti-diabetic and anti-inflammatory lipokines. Recently FAHFAs were also found to predict cardiorespiratory fitness in a cross-sectional study of recreationally trained runners. Here we report the influences of body composition and gender on static FAHFA abundances in circulation. We compared the association between circulating FAHFA concentrations and body composition, determined by dual x-ray absorptiometry, in female recreational runners who were lean (BMI < 25 kg/m2, n = 6), to those who were overweight (BMI ≥ 25 kg/m2, n = 7). To characterize the effect of gender we also compared circulating FAHFAs in lean male recreational runners (n = 8) to recreationally trained lean female (n = 6) runner group. Circulating FAHFAs were increased in females in a manner that was modulated by specific adipose depot sizes, blood glucose, and lean body mass. As expected, circulating FAHFAs were diminished in the overweight group, but strikingly, within the lean cohort, increases in circulating FAHFAs were promoted by increased fat mass, relative to lean mass, while the overweight group showed a significantly attenuated relationship. These studies suggest multimodal regulation of circulating FAHFAs and raise hypotheses to test endogenous FAHFA dynamic sources and sinks in health and disease, which will be essential for therapeutic target development. Baseline circulating FAHFA concentrations could signal sub-clinical metabolic dysfunction in metabolically healthy obesity.


Subject(s)
Body Composition , Running , Humans , Female , Running/physiology , Male , Adult , Fatty Acids/blood , Sex Factors , Overweight/blood , Absorptiometry, Photon , Cross-Sectional Studies , Body Mass Index , Sex Characteristics
3.
Nat Metab ; 5(12): 2062-2074, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092961

ABSTRACT

Prospective molecular targets and therapeutic applications for ketone body metabolism have increased exponentially in the past decade. Initially considered to be restricted in scope as liver-derived alternative fuel sources during periods of carbohydrate restriction or as toxic mediators during diabetic ketotic states, ketogenesis and ketone bodies modulate cellular homeostasis in multiple physiological states through a diversity of mechanisms. Selective signalling functions also complement the metabolic fates of the ketone bodies acetoacetate and D-ß-hydroxybutyrate. Here we discuss recent discoveries revealing the pleiotropic roles of ketone bodies, their endogenous sourcing, signalling mechanisms and impact on target organs, and considerations for when they are either stimulated for endogenous production by diets or pharmacological agents or administered as exogenous wellness-promoting agents.


Subject(s)
Diet , Ketone Bodies , Ketone Bodies/metabolism , 3-Hydroxybutyric Acid/metabolism , Liver/metabolism , Homeostasis/physiology
4.
Heliyon ; 9(11): e22227, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38058654

ABSTRACT

Background: Ketone bodies are pleotropic metabolites that play important roles in multiple biological processes ranging from bioenergetics to inflammation regulation via suppression of the NLRP3 inflammasome, and epigenetic modifications. Ketone bodies are elevated in left ventricular failure (LVF) and multiple approaches that increase ketone concentrations exert advantageous cardiac effects in rodents and humans. However, the relationships between ketone bodies and right ventricular failure (RVF) are relatively unexplored. Methods: 51 PAH patients were dichotomized into preserved or impaired RV function based on a cardiac index of 2.2 L/min/m2. Impaired RV function patients were further segmented into intermediate or severe RV dysfunction based on a right atrial pressure of 8 mm Hg. Serum ketone bodies acetoacetate (AcAc) and beta-hydroxybutyrate (ßOHB) were quantified using ultra performance liquid chromatography and mass spectrometry. In rodent studies, male Sprague Dawley rats were assigned to three groups: control (saline injection), monocrotaline (MCT) standard chow diet (MCT-Standard), and MCT ketogenic diet (MCT-Keto). Immunoblots and confocal microscopy probed macrophage NLRP3 activation in RV extracts and sections. RV fibrosis was determined by Picrosirus Red. Echocardiography evaluated RV function. Pulmonary arteriole remodeling was assessed from histological specimens. Results: Human RVF patients lacked a compensatory ketosis as serum AcAc and ßOHB levels were not associated with hemodynamic, echocardiographic, or biochemical measures of RV dysfunction. In rodent studies, AcAc and ßOHB levels were also not elevated in MCT-mediated RVF, but the ketogenic diet significantly increased AcAc and ßOHB levels. MCT-Keto exhibited suppressed NLRP3 activation with a reduction in NLRP3, ASC (apoptosis-associated speck-like protein), pro-caspase-1, and interleukin-1 beta on immunoblots. Moreover, the number of ASC-positive macrophage in RV sections was reduced, RV fibrosis was blunted, and RV function was augmented in MCT-Keto rats. Conclusion: The ketogenic response is blunted in pulmonary arterial hypertension (PAH) patients with RVF. In the MCT rat model of PAH-mediated RVF, a dietary-induced ketosis improves RV function, suppresses NLRP3 inflammasome activation, and combats RV fibrosis. The summation of these data suggest ketogenic therapies may be particularly efficacious in RVF, and therefore future studies evaluating ketogenic interventions in human RVF are warranted.

5.
Neurobiol Pain ; 14: 100138, 2023.
Article in English | MEDLINE | ID: mdl-38099277

ABSTRACT

Chronic pain is a substantial health burden and options for treating chronic pain remain minimally effective. Ketogenic diets are emerging as well-tolerated, effective therapeutic strategies in preclinical models of chronic pain, especially diabetic neuropathy. We tested whether a ketogenic diet is antinociceptive through ketone oxidation and related activation of ATP-gated potassium (KATP) channels in mice. We demonstrate that consumption of a ketogenic diet for one week reduced evoked nocifensive behaviors (licking, biting, lifting) following intraplantar injection of different noxious stimuli (methylglyoxal, cinnamaldehyde, capsaicin, or Yoda1) in mice. A ketogenic diet also decreased the expression of p-ERK, an indicator of neuronal activation in the spinal cord, following peripheral administration of these stimuli. Using a genetic mouse model with deficient ketone oxidation in peripheral sensory neurons, we demonstrate that protection against methylglyoxal-induced nociception by a ketogenic diet partially depends on ketone oxidation by peripheral neurons. Injection of tolbutamide, a KATP channel antagonist, prevented ketogenic diet-mediated antinociception following intraplantar capsaicin injection. Tolbutamide also restored the expression of spinal activation markers in ketogenic diet-fed, capsaicin-injected mice. Moreover, activation of KATP channels with the KATP channel agonist diazoxide reduced pain-like behaviors in capsaicin-injected, chow-fed mice, similar to the effects observed with a ketogenic diet. Diazoxide also reduced the number of p-ERK+ cells in capsaicin-injected mice. These data support a mechanism that includes neuronal ketone oxidation and activation of KATP channels to provide ketogenic diet-related analgesia. This study also identifies KATP channels as a new target to mimic the antinociceptive effects of a ketogenic diet.

6.
bioRxiv ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37961209

ABSTRACT

Diet can protect from autoimmune disease; however, whether diet acts via the host and/or microbiome remains unclear. Here, we use a ketogenic diet (KD) as a model to dissect these complex interactions. A KD rescued the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis in a microbiota-dependent fashion. Dietary supplementation with a single KD-dependent host metabolite (ß-hydroxybutyrate, ßHB) rescued EAE whereas transgenic mice unable to produce ßHB in the intestine developed more severe disease. Transplantation of the ßHB-shaped gut microbiota was protective. Lactobacillus sequence variants were associated with decreased T helper 17 (Th17) cell activation in vitro . Finally, we isolated a L. murinus strain that protected from EAE, which was phenocopied by the Lactobacillus metabolite indole lactic acid. Thus, diet alters the immunomodulatory potential of the gut microbiota by shifting host metabolism, emphasizing the utility of taking a more integrative approach to study diet-host-microbiome interactions.

7.
Am J Physiol Cell Physiol ; 325(3): C750-C757, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37575059

ABSTRACT

During periods of prolonged fasting/starvation, the liver generates ketones [i.e., ß-hydroxybutyrate (ßOHB)] that primarily serve as alternative substrates for ATP production. Previous studies have demonstrated that elevations in skeletal muscle ketone oxidation contribute to obesity-related hyperglycemia, whereas inhibition of succinyl CoA:3-ketoacid CoA transferase (SCOT), the rate-limiting enzyme of ketone oxidation, can alleviate obesity-related hyperglycemia. As circulating ketone levels are a key determinant of ketone oxidation rates, we tested the hypothesis that increases in circulating ketone levels would worsen glucose homeostasis secondary to increases in muscle ketone oxidation. Accordingly, male C57BL/6J mice were subjected to high-fat diet-induced obesity, whereas their lean counterparts received a standard chow diet. Lean and obese mice were orally administered either a ketone ester (KE) or placebo, followed by a glucose tolerance test. In tandem, we conducted isolated islet perifusion experiments to quantify insulin secretion in response to ketones. We observed that exogenous KE administration robustly increases circulating ßOHB levels, which was associated with an improvement in glucose tolerance only in obese mice. These observations were independent of muscle ketone oxidation, as they were replicated in mice with a skeletal muscle-specific SCOT deficiency. Furthermore, the R-isomer of ßOHB produced greater increases in perifusion insulin levels versus the S-isomer in isolated islets from obese mice. Taken together, acute elevations in circulating ketones promote glucose-lowering in obesity. Given that only the R-isomer of ßOHB is oxidized, further studies are warranted to delineate the precise role of ß-cell ketone oxidation in regulating insulin secretion.NEW & NOTEWORTHY It has been demonstrated that increased skeletal muscle ketone metabolism contributes to obesity-related hyperglycemia. Since increases in ketone supply are key determinants of organ ketone oxidation rates, we determined whether acute elevations in circulating ketones following administration of an oral ketone ester may worsen glucose homeostasis in lean or obese mice. Our work demonstrates the opposite, as acute elevations in circulating ketones improved glucose tolerance in obese mice.


Subject(s)
Hyperglycemia , Ketones , Animals , Male , Mice , Mice, Obese , Ketones/pharmacology , Mice, Inbred C57BL , Glucose/metabolism , 3-Hydroxybutyric Acid/pharmacology , 3-Hydroxybutyric Acid/metabolism , Obesity/drug therapy , Obesity/metabolism , Hyperglycemia/drug therapy
8.
Immunity ; 56(9): 2021-2035.e8, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37516105

ABSTRACT

Environmental nutrient availability influences T cell metabolism, impacting T cell function and shaping immune outcomes. Here, we identified ketone bodies (KBs)-including ß-hydroxybutyrate (ßOHB) and acetoacetate (AcAc)-as essential fuels supporting CD8+ T cell metabolism and effector function. ßOHB directly increased CD8+ T effector (Teff) cell cytokine production and cytolytic activity, and KB oxidation (ketolysis) was required for Teff cell responses to bacterial infection and tumor challenge. CD8+ Teff cells preferentially used KBs over glucose to fuel the tricarboxylic acid (TCA) cycle in vitro and in vivo. KBs directly boosted the respiratory capacity and TCA cycle-dependent metabolic pathways that fuel CD8+ T cell function. Mechanistically, ßOHB was a major substrate for acetyl-CoA production in CD8+ T cells and regulated effector responses through effects on histone acetylation. Together, our results identify cell-intrinsic ketolysis as a metabolic and epigenetic driver of optimal CD8+ T cell effector responses.


Subject(s)
CD8-Positive T-Lymphocytes , Histones , 3-Hydroxybutyric Acid/metabolism , 3-Hydroxybutyric Acid/pharmacology , Acetylation , Histones/metabolism , Ketone Bodies , Animals , Mice
9.
Cell Rep ; 42(7): 112749, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37405912

ABSTRACT

Nutrient starvation drives yeast meiosis, whereas retinoic acid (RA) is required for mammalian meiosis through its germline target Stra8. Here, by using single-cell transcriptomic analysis of wild-type and Stra8-deficient juvenile mouse germ cells, our data show that the expression of nutrient transporter genes, including Slc7a5, Slc38a2, and Slc2a1, is downregulated in germ cells during meiotic initiation, and this process requires Stra8, which binds to these genes and induces their H3K27 deacetylation. Consequently, Stra8-deficient germ cells sustain glutamine and glucose uptake in response to RA and exhibit hyperactive mTORC1/protein kinase A (PKA) activities. Importantly, expression of Slc38a2, a glutamine importer, is negatively correlated with meiotic genes in the GTEx dataset, and Slc38a2 knockdown downregulates mTORC1/PKA activities and induces meiotic gene expression. Thus, our study indicates that RA via Stra8, a chordate morphogen pathway, induces meiosis partially by generating a conserved nutrient restriction signal in mammalian germ cells by downregulating their nutrient transporter expression.


Subject(s)
Adaptor Proteins, Signal Transducing , Glutamine , Mice , Animals , Glutamine/genetics , Adaptor Proteins, Signal Transducing/metabolism , Germ Cells/metabolism , Tretinoin/pharmacology , Meiosis , Mammals/metabolism
10.
bioRxiv ; 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37333295

ABSTRACT

Fatty acid esters of hydroxy fatty acid (FAHFA) are anti-diabetic and anti-inflammatory lipokines. Recently FAHFAs were also found to predict cardiorespiratory fitness in trained runners. Here we compared the association between circulating FAHFA baseline concentrations and body composition, determined by dual x-ray absorptiometry, in female runners who were lean (BMI < 25 kg/m2, n = 6), to those who were overweight (BMI ≥ 25 kg/m2, n = 7). We also compared circulating FAHFAs in lean male runners (n = 8) to the same trained lean female (n = 6) runner group. Circulating FAHFAs were increased in females in a manner that was modulated by specific adipose depot sizes, blood glucose, and lean body mass. As expected, circulating FAHFAs were diminished in the overweight group, but, strikingly, in both lean and overweight cohorts, increases in circulating FAHFAs were promoted by increased fat mass, relative to lean mass. These studies suggest multimodal regulation of circulating FAHFAs and raise hypotheses to test endogenous FAHFA dynamic sources and sinks in health and disease, which will be essential for therapeutic target development. Baseline circulating FAHFA concentrations could signal sub-clinical metabolic dysfunction in metabolically healthy obesity.

11.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37292762

ABSTRACT

Chronic pain is a substantial health burden and options for treating chronic pain remain minimally effective. Ketogenic diets are emerging as well-tolerated, effective therapeutic strategies in preclinical models of chronic pain, especially diabetic neuropathy. We tested whether a ketogenic diet is antinociceptive through ketone oxidation and related activation of ATP-gated potassium (KATP) channels in mice. We demonstrate that consumption of a ketogenic diet for one week reduced evoked nocifensive behaviors (licking, biting, lifting) following intraplantar injection of different noxious stimuli (methylglyoxal, cinnamaldehyde, capsaicin, or Yoda1) in mice. A ketogenic diet also decreased the expression of p-ERK, an indicator of neuronal activation in the spinal cord, following peripheral administration of these stimuli. Using a genetic mouse model with deficient ketone oxidation in peripheral sensory neurons, we demonstrate that protection against methylglyoxal-induced nociception by a ketogenic diet partially depends on ketone oxidation by peripheral neurons. Injection of tolbutamide, a KATP channel antagonist, prevented ketogenic diet-mediated antinociception following intraplantar capsaicin injection. Tolbutamide also restored the expression of spinal activation markers in ketogenic diet-fed, capsaicin-injected mice. Moreover, activation of KATP channels with the KATP channel agonist diazoxide reduced pain-like behaviors in capsaicin-injected, chow-fed mice, similar to the effects observed with a ketogenic diet. Diazoxide also reduced the number of p-ERK+ cells in capsaicin-injected mice. These data support a mechanism that includes neuronal ketone oxidation and activation of KATP channels to provide ketogenic diet-related analgesia. This study also identifies KATP channels as a new target to mimic the antinociceptive effects of a ketogenic diet.

12.
Front Cell Dev Biol ; 11: 1167097, 2023.
Article in English | MEDLINE | ID: mdl-37250894

ABSTRACT

Metformin is a widely prescribed medication whose mechanism of action is not completely defined and whose role in gestational diabetes management remains controversial. In addition to increasing the risk of fetal growth abnormalities and preeclampsia, gestational diabetes is associated with abnormalities in placental development including impairments in trophoblast differentiation. Given that metformin impacts cellular differentiation events in other systems, we assessed metformin's impact on trophoblast metabolism and differentiation. Using established cell culture models of trophoblast differentiation, oxygen consumption rates and relative metabolite abundance were determined following 200 µM (therapeutic range) and 2000 µM (supra-therapeutic range) metformin treatment using Seahorse and mass-spectrometry approaches. While no differences in oxygen consumption rates or relative metabolite abundance were detected between vehicle and 200 µM metformin-treated cells, 2000 µM metformin impaired oxidative metabolism and increased the abundance of lactate and TCA cycle intermediates, α-ketoglutarate, succinate, and malate. Examining differentiation, treatment with 2000 µM, but not 200 µM metformin, impaired HCG production and expression of multiple trophoblast differentiation markers. Overall, this work suggests that supra-therapeutic concentrations of metformin impair trophoblast metabolism and differentiation whereas metformin concentrations in the therapeutic range do not strongly impact these processes.

13.
bioRxiv ; 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37162836

ABSTRACT

Ketone bodies are pleotropic metabolites that play important roles in multiple biological processes ranging from bioenergetics to inflammation regulation via suppression of the NLRP3 inflammasome, and epigenetic modifications. Ketone bodies are elevated in left ventricular failure (LVF) and multiple approaches that increase ketone concentrations exert advantageous cardiac effects in rodents and humans. However, the relationships between ketone bodies and right ventricular failure (RVF) are relatively unexplored. Moreover, the cardioprotective properties of ketones in preclinical RVF are unknown. Here, we show a compensatory ketosis is absent in pulmonary arterial hypertension (PAH) patients with RVF. In the monocrotaline (MCT) rat model of PAH-mediated RVF, a dietary-induced ketosis improves RV function, suppresses NLRP3 inflammasome activation, and combats RV fibrosis. The summation of these data suggest ketogenic therapies may be particularly efficacious in RVF, and therefore future studies evaluating ketogenic interventions in human RVF are warranted.

14.
Sci Rep ; 13(1): 7387, 2023 05 06.
Article in English | MEDLINE | ID: mdl-37149697

ABSTRACT

Cytotrophoblasts fuse to form and renew syncytiotrophoblasts necessary to maintain placental health throughout gestation. During cytotrophoblast to syncytiotrophoblast differentiation, cells undergo regulated metabolic and transcriptional reprogramming. Mitochondria play a critical role in differentiation events in cellular systems, thus we hypothesized that mitochondrial metabolism played a central role in trophoblast differentiation. In this work, we employed static and stable isotope tracing untargeted metabolomics methods along with gene expression and histone acetylation studies in an established BeWo cell culture model of trophoblast differentiation. Differentiation was associated with increased abundance of the TCA cycle intermediates citrate and α-ketoglutarate. Citrate was preferentially exported from mitochondria in the undifferentiated state but was retained to a larger extent within mitochondria upon differentiation. Correspondingly, differentiation was associated with decreased expression of the mitochondrial citrate transporter (CIC). CRISPR/Cas9 disruption of the mitochondrial citrate carrier showed that CIC is required for biochemical differentiation of trophoblasts. Loss of CIC resulted in broad alterations in gene expression and histone acetylation. These gene expression changes were partially rescued through acetate supplementation. Taken together, these results highlight a central role for mitochondrial citrate metabolism in orchestrating histone acetylation and gene expression during trophoblast differentiation.


Subject(s)
Histones , Placenta , Humans , Female , Pregnancy , Placenta/metabolism , Histones/metabolism , Cell Differentiation/genetics , Trophoblasts/metabolism , Mitochondria/metabolism , Citrates/pharmacology , Citrates/metabolism
15.
Exp Neurol ; 365: 114428, 2023 07.
Article in English | MEDLINE | ID: mdl-37100111

ABSTRACT

Ketogenic diets are emerging as protective interventions in preclinical and clinical models of somatosensory nervous system disorders. Additionally, dysregulation of succinyl-CoA 3-oxoacid CoA-transferase 1 (SCOT, encoded by Oxct1), the fate-committing enzyme in mitochondrial ketolysis, has recently been described in Friedreich's ataxia and amyotrophic lateral sclerosis. However, the contribution of ketone metabolism in the normal development and function of the somatosensory nervous system remains poorly characterized. We generated sensory neuron-specific, Advillin-Cre knockout of SCOT (Adv-KO-SCOT) mice and characterized the structure and function of their somatosensory system. We used histological techniques to assess sensory neuronal populations, myelination, and skin and spinal dorsal horn innervation. We also examined cutaneous and proprioceptive sensory behaviors with the von Frey test, radiant heat assay, rotarod, and grid-walk tests. Adv-KO-SCOT mice exhibited myelination deficits, altered morphology of putative Aδ soma from the dorsal root ganglion, reduced cutaneous innervation, and abnormal innervation of the spinal dorsal horn compared to wildtype mice. Synapsin 1-Cre-driven knockout of Oxct1 confirmed deficits in epidermal innervation following a loss of ketone oxidation. Loss of peripheral axonal ketolysis was further associated with proprioceptive deficits, yet Adv-KO-SCOT mice did not exhibit drastically altered cutaneous mechanical and thermal thresholds. Knockout of Oxct1 in peripheral sensory neurons resulted in histological abnormalities and severe proprioceptive deficits in mice. We conclude that ketone metabolism is essential for the development of the somatosensory nervous system. These findings also suggest that decreased ketone oxidation in the somatosensory nervous system may explain the neurological symptoms of Friedreich's ataxia.


Subject(s)
Friedreich Ataxia , Animals , Mice , Friedreich Ataxia/pathology , Mice, Knockout , Ketones , Oxidation-Reduction , Sensory Receptor Cells/pathology
16.
Am J Physiol Endocrinol Metab ; 324(5): E425-E436, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36989424

ABSTRACT

Ketone bodies are an endogenous fuel source generated primarily by the liver to provide alternative energy for extrahepatic tissues during prolonged fasting and exercise. Skeletal muscle is an important site of ketone body oxidation that occurs through a series of reactions requiring the enzyme succinyl-CoA:3-ketoacid-CoA transferase (SCOT/Oxct1). We have previously shown that deleting SCOT in the skeletal muscle protects against obesity-induced insulin resistance by increasing pyruvate dehydrogenase (PDH) activity, the rate-limiting enzyme of glucose oxidation. However, it remains unclear whether inhibiting muscle ketone body oxidation causes hypoglycemia and affects fuel metabolism in the absence of obesity. Here, we show that lean mice lacking skeletal muscle SCOT (SCOTSkM-/-) exhibited no overt phenotypic differences in glucose and fat metabolism from their human α-skeletal actin-Cre (HSACre) littermates. Of interest, we found that plasma and muscle branched-chain amino acid (BCAA) levels are elevated in SCOTSkM-/- lean mice compared with their HSACre littermates. Interestingly, this alteration in BCAA catabolism was only seen in SCOTSkM-/- mice under low-fat feeding and associated with decreased expression of mitochondrial branched-chain aminotransferases (BCATm/Bcat2), the first enzyme in BCAA catabolic pathway. Loss- and gain-of-function studies in C2C12 myotubes demonstrated that suppressing SCOT markedly diminished BCATm expression, whereas overexpressing SCOT resulted in an opposite effect without influencing BCAA oxidation enzymes. Furthermore, SCOT overexpression in C2C12 myotubes significantly increased luciferase activity driven by a Bcat2 promoter construct. Together, our findings indicate that SCOT regulates the expression of the Bcat2 gene, which, through the abundance of its product BCATm, may influence circulating BCAA concentrations.NEW & NOTEWORTHY Most studies investigated ketone body metabolism under pathological conditions, whereas the role of ketone body metabolism in regulating normal physiology has been relatively understudied. To address this gap, we used lean mice lacking muscle ketone body oxidation enzyme SCOT. Our work demonstrates that deleting muscle SCOT has no impact on glucose and fat metabolism in lean mice, but it disrupts muscle BCAA catabolism and causes an accumulation of BCAAs by altering BCATm.


Subject(s)
Ketone Bodies , Ketones , Animals , Mice , Humans , Ketone Bodies/metabolism , Amino Acids, Branched-Chain/metabolism , Muscle, Skeletal/metabolism , Glucose/metabolism , Obesity/metabolism
17.
Circ Res ; 132(7): 882-898, 2023 03 31.
Article in English | MEDLINE | ID: mdl-36996176

ABSTRACT

The ketone bodies beta-hydroxybutyrate and acetoacetate are hepatically produced metabolites catabolized in extrahepatic organs. Ketone bodies are a critical cardiac fuel and have diverse roles in the regulation of cellular processes such as metabolism, inflammation, and cellular crosstalk in multiple organs that mediate disease. This review focuses on the role of cardiac ketone metabolism in health and disease with an emphasis on the therapeutic potential of ketosis as a treatment for heart failure (HF). Cardiac metabolic reprogramming, characterized by diminished mitochondrial oxidative metabolism, contributes to cardiac dysfunction and pathologic remodeling during the development of HF. Growing evidence supports an adaptive role for ketone metabolism in HF to promote normal cardiac function and attenuate disease progression. Enhanced cardiac ketone utilization during HF is mediated by increased availability due to systemic ketosis and a cardiac autonomous upregulation of ketolytic enzymes. Therapeutic strategies designed to restore high-capacity fuel metabolism in the heart show promise to address fuel metabolic deficits that underpin the progression of HF. However, the mechanisms involved in the beneficial effects of ketone bodies in HF have yet to be defined and represent important future lines of inquiry. In addition to use as an energy substrate for cardiac mitochondrial oxidation, ketone bodies modulate myocardial utilization of glucose and fatty acids, two vital energy substrates that regulate cardiac function and hypertrophy. The salutary effects of ketone bodies during HF may also include extra-cardiac roles in modulating immune responses, reducing fibrosis, and promoting angiogenesis and vasodilation. Additional pleotropic signaling properties of beta-hydroxybutyrate and AcAc are discussed including epigenetic regulation and protection against oxidative stress. Evidence for the benefit and feasibility of therapeutic ketosis is examined in preclinical and clinical studies. Finally, ongoing clinical trials are reviewed for perspective on translation of ketone therapeutics for the treatment of HF.


Subject(s)
Heart Failure , Ketosis , Humans , Ketones/therapeutic use , 3-Hydroxybutyric Acid/therapeutic use , Epigenesis, Genetic , Ketone Bodies/therapeutic use , Ketone Bodies/metabolism , Heart Failure/metabolism , Ketosis/drug therapy , Ketosis/metabolism , Ketosis/pathology
18.
bioRxiv ; 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36824783

ABSTRACT

Metformin is a widely prescribed medication whose mechanism of action is not completely defined and whose role in gestational diabetes management remains controversial. In addition to increasing risks of fetal growth abnormalities and preeclampsia, gestational diabetes is associated with abnormalities in placental development including impairments in trophoblast differentiation. Given that metformin impacts cellular differentiation events in other systems, we assessed metformin's impact on trophoblast metabolism and differentiation. Using established cell culture models of trophoblast differentiation, oxygen consumption rates and relative metabolite abundance were determined following 200 µM (therapeutic range) and 2000 µM (supra-therapeutic range) metformin treatment using Seahorse and mass-spectrometry approaches. While no differences in oxygen consumption rates or relative metabolite abundance were detected between vehicle and 200 µM metformin treated cells, 2000 µM metformin impaired oxidative metabolism and increased abundance of lactate and TCA cycle intermediates, α-ketoglutarate, succinate, and malate. Examining differentiation, treatment with 2000 µM, but not 200 µM metformin, impaired HCG production and expression of multiple trophoblast differentiation markers. Overall, this work suggests that supra-therapeutic concentrations of metformin impairs trophoblast metabolism and differentiation whereas metformin concentrations in the therapeutic range do not strongly impact these processes.

19.
bioRxiv ; 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36711538

ABSTRACT

Ketogenic diets are emerging as protective interventions in preclinical and clinical models of somatosensory nervous system disorders. Additionally, dysregulation of succinyl-CoA 3-oxoacid CoA-transferase 1 (SCOT, encoded by Oxct1 ), the fate-committing enzyme in mitochondrial ketolysis, has recently been described in Friedreich's ataxia and amyotrophic lateral sclerosis. However, the contribution of ketone metabolism in the normal development and function of the somatosensory nervous system remains poorly characterized. We generated sensory neuron-specific, Advillin-Cre knockout of SCOT (Adv-KO-SCOT) mice and characterized the structure and function of their somatosensory system. We used histological techniques to assess sensory neuronal populations, myelination, and skin and spinal dorsal horn innervation. We also examined cutaneous and proprioceptive sensory behaviors with the von Frey test, radiant heat assay, rotarod, and grid-walk tests. Adv-KO-SCOT mice exhibited myelination deficits, altered morphology of putative Aδ soma from the dorsal root ganglion, reduced cutaneous innervation, and abnormal innervation of the spinal dorsal horn compared to wildtype mice. Synapsin 1-Cre-driven knockout of Oxct1 confirmed deficits in epidermal innervation following a loss of ketone oxidation. Loss of peripheral axonal ketolysis was further associated with proprioceptive deficits, yet Adv-KO-SCOT mice did not exhibit drastically altered cutaneous mechanical and thermal thresholds. Knockout of Oxct1 in peripheral sensory neurons resulted in histological abnormalities and severe proprioceptive deficits in mice. We conclude that ketone metabolism is essential for the development of the somatosensory nervous system. These findings also suggest that decreased ketone oxidation in the somatosensory nervous system may explain the neurological symptoms of Friedreich's ataxia.

20.
bioRxiv ; 2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36711862

ABSTRACT

Cytotrophoblasts fuse to form and renew syncytiotrophoblasts necessary to maintain placental health throughout gestation. During cytotrophoblast to syncytiotrophoblast differentiation, cells undergo regulated metabolic and transcriptional reprogramming. Mitochondria play a critical role in differentiation events in cellular systems, thus we hypothesized that mitochondrial metabolism played a central role in trophoblast differentiation. In this work, we employed static and stable isotope tracing untargeted metabolomics methods along with gene expression and histone acetylation studies in an established cell culture model of trophoblast differentiation. Trophoblast differentiation was associated with increased abundance of the TCA cycle intermediates citrate and α-ketoglutarate. Citrate was preferentially exported from mitochondria in the undifferentiated state but was retained to a larger extent within mitochondria upon differentiation. Correspondingly, differentiation was associated with decreased expression of the mitochondrial citrate transporter (CIC). CRISPR/Cas9 disruption of the mitochondrial citrate carrier showed that CIC is required for biochemical differentiation of trophoblasts. Loss of CIC resulted in broad alterations in gene expression and histone acetylation. These gene expression changes were partially rescued through acetate supplementation. Taken together, these results highlight a central role for mitochondrial citrate metabolism in orchestrating histone acetylation and gene expression during trophoblast differentiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...