Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 29(20): 5760-5774, 2023 10.
Article in English | MEDLINE | ID: mdl-37571868

ABSTRACT

Promotion of soil organic carbon (SOC) sequestration as a potential solution to support climate change mitigation as well as more sustainable farming systems is rising steeply. As a result, voluntary carbon markets are rapidly expanding in which farmers get paid per tons of carbon dioxide sequestered. This market relies on protocols using simulation models to certify that increases in SOC stocks do indeed occur and generate tradable carbon credits. This puts tremendous pressure on SOC simulation models, which are now expected to provide the foundation for a reliable global carbon credit generation system. There exist an incredibly large number SOC simulation models which vary considerably in their applicability and sensitivity. This confronts practitioners and certificate providers with the critical challenge of selecting the models that are appropriate to the specific conditions in which they will be applied. Model validation and the context of said validation define the boundaries of applicability of the model, and are critical therefore to model selection. To date, however, guidelines for model selection are lacking. In this review, we present a comprehensive review of existing SOC models and a classification of their validation contexts. We found that most models are not validated (71%), and out of those validated, validation contexts are overall limited. Validation studies so far largely focus on the global north. Therefore, countries of the global south, the least emitting countries that are already facing the most drastic consequences of climate change, are the most poorly supported. In addition, we found a general lack of clear reporting, numerous flaws in model performance evaluation, and a poor overall coverage of land use types across countries and pedoclimatic conditions. We conclude that, to date, SOC simulation does not represent an adequate tool for globally ensuring effectiveness of SOC sequestration effort and ensuring reliable carbon crediting.


Subject(s)
Carbon , Soil , Agriculture/methods , Farms , Carbon Sequestration
2.
Front Microbiol ; 11: 682, 2020.
Article in English | MEDLINE | ID: mdl-32477279

ABSTRACT

The fate of future food productivity depends primarily upon the health of soil used for cultivation. For Atlantic Europe, increased precipitation is predicted during both winter and summer months. Interactions between climate change and the fertilization of land used for agriculture are therefore vital to understand. This is particularly relevant for inorganic phosphorus (P) fertilization, which already suffers from resource and sustainability issues. The soil microbiota are a key indicator of soil health and their functioning is critical to plant productivity, playing an important role in nutrient acquisition, particularly when plant available nutrients are limited. A multifactorial, mesocosm study was established to assess the effects of increased soil water availability and inorganic P fertilization, on spring wheat biomass, soil enzymatic activity (dehydrogenase and acid phosphomonoesterase) and soil bacterial community assemblages. Our results highlight the significance of the spring wheat rhizosphere in shaping soil bacterial community assemblages and specific taxa under a moderate soil water content (60%), which was diminished under a higher level of soil water availability (80%). In addition, an interaction between soil water availability and plant presence overrode a long-term bacterial sensitivity to inorganic P fertilization. Together this may have implications for developing sustainable P mobilization through the use of the soil microbiota in future. Spring wheat biomass grown under the higher soil water regime (80%) was reduced compared to the constant water regime (60%) and a reduction in yield could be exacerbated in the future when grown in cultivated soil that have been fertilized with inorganic P. The potential feedback mechanisms for this need now need exploration to understand how future management of crop productivity may be impacted.

3.
Sci Data ; 7(1): 103, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32218461

ABSTRACT

As the most abundant animals on earth, nematodes are a dominant component of the soil community. They play critical roles in regulating biogeochemical cycles and vegetation dynamics within and across landscapes and are an indicator of soil biological activity. Here, we present a comprehensive global dataset of soil nematode abundance and functional group composition. This dataset includes 6,825 georeferenced soil samples from all continents and biomes. For geospatial mapping purposes these samples are aggregated into 1,933 unique 1-km pixels, each of which is linked to 73 global environmental covariate data layers. Altogether, this dataset can help to gain insight into the spatial distribution patterns of soil nematode abundance and community composition, and the environmental drivers shaping these patterns.


Subject(s)
Animal Distribution , Nematoda/classification , Animals , Ecosystem , Soil
4.
Nature ; 572(7768): 194-198, 2019 08.
Article in English | MEDLINE | ID: mdl-31341281

ABSTRACT

Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem functioning, few quantitative, spatially explicit models of the active belowground community currently exist. In particular, nematodes are the most abundant animals on Earth, filling all trophic levels in the soil food web. Here we use 6,759 georeferenced samples to generate a mechanistic understanding of the patterns of the global abundance of nematodes in the soil and the composition of their functional groups. The resulting maps show that 4.4 ± 0.64 × 1020 nematodes (with a total biomass of approximately 0.3 gigatonnes) inhabit surface soils across the world, with higher abundances in sub-Arctic regions (38% of total) than in temperate (24%) or tropical (21%) regions. Regional variations in these global trends also provide insights into local patterns of soil fertility and functioning. These high-resolution models provide the first steps towards representing soil ecological processes in global biogeochemical models and will enable the prediction of elemental cycling under current and future climate scenarios.


Subject(s)
Geographic Mapping , Nematoda/classification , Nematoda/isolation & purification , Soil/parasitology , Animals , Biomass , Carbon/metabolism , Nematoda/chemistry , Phylogeography , Reproducibility of Results , Uncertainty
5.
Sci Rep ; 9(1): 605, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679566

ABSTRACT

To better understand the relationship between soil bacterial communities, soil physicochemical properties, land use and geographical distance, we considered for the first time ever a European transect running from Sweden down to Portugal and from France to Slovenia. We investigated 71 sites based on their range of variation in soil properties (pH, texture and organic matter), climatic conditions (Atlantic, alpine, boreal, continental, Mediterranean) and land uses (arable, forest and grassland). 16S rRNA gene amplicon pyrosequencing revealed that bacterial communities highly varied in diversity, richness, and structure according to environmental factors. At the European scale, taxa area relationship (TAR) was significant, supporting spatial structuration of bacterial communities. Spatial variations in community diversity and structure were mainly driven by soil physicochemical parameters. Within soil clusters (k-means approach) corresponding to similar edaphic and climatic properties, but to multiple land uses, land use was a major driver of the bacterial communities. Our analyses identified specific indicators of land use (arable, forest, grasslands) or soil conditions (pH, organic C, texture). These findings provide unprecedented information on soil bacterial communities at the European scale and on the drivers involved; possible applications for sustainable soil management are discussed.


Subject(s)
Bacteria/isolation & purification , Soil Microbiology , Bacteria/genetics , Biodiversity , Europe , Forests , Grassland , Hydrogen-Ion Concentration , Organic Chemicals/analysis , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Soil/chemistry
6.
Ambio ; 47(2): 216-230, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29178059

ABSTRACT

Functional Land Management (FLM) is proposed as an integrator for sustainability policies and assesses the functional capacity of the soil and land to deliver primary productivity, water purification and regulation, carbon cycling and storage, habitat for biodiversity and recycling of nutrients. This paper presents the catchment challenge as a method to bridge the gap between science, stakeholders and policy for the effective management of soils to deliver these functions. Two challenges were completed by a wide range of stakeholders focused around a physical catchment model-(1) to design an optimised catchment based on soil function targets, (2) identify gaps to implementation of the proposed design. In challenge 1, a high level of consensus between different stakeholders emerged on soil and management measures to be implemented to achieve soil function targets. Key gaps including knowledge, a mix of market and voluntary incentives and mandatory measures were identified in challenge 2.


Subject(s)
Conservation of Natural Resources , Models, Theoretical , Soil , Biodiversity , Ecosystem
7.
Sci Rep ; 7: 45635, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28382933

ABSTRACT

Soil plays a key role in the global carbon (C) cycle. Most current assessments of SOC stocks and the guidelines given by Intergovernmental Panel on Climate Change (IPCC) focus on the top 30 cm of soil. Our research shows that, when considering only total quantities, most of the SOC stocks are found in this top layer. However, not all forms of SOC are equally valuable as long-term stable stores of carbon: the majority of SOC is available for mineralisation and can potentially be re-emitted to the atmosphere. SOC associated with micro-aggregates and silt plus clay fractions is more stable and therefore represents a long-term carbon store. Our research shows that most of this stable carbon is located at depths below 30 cm (42% of subsoil SOC is located in microaggregates and silt and clay, compared to 16% in the topsoil), specifically in soils that are subject to clay illuviation. This has implications for land management decisions in temperate grassland regions, defining the trade-offs between primary productivity and C emissions in clay-illuviated soils, as a result of drainage. Therefore, climate smart land management should consider the balance between SOC stabilisation in topsoils for productivity versus sequestration in subsoils for climate mitigation.

8.
Integr Environ Assess Manag ; 9(2): 276-84, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23325463

ABSTRACT

A large number of biological indicators have been proposed over the years for assessing soil quality. Although many of those have been applied in monitoring schemes across Europe, no consensus exists on the extent to which these indicators might perform best and how monitoring schemes can be further optimized in terms of scientific and policy relevance. Over the past decade, developments in environmental monitoring and risk assessment converged toward the use of indicators and endpoints that are related to soil functioning and ecosystem services. In view of the proposed European Union (EU) Soil Framework Directive, there is an urgent need to identify and evaluate indicators for soil biodiversity and ecosystem services. The recently started integrated project, Ecological Function and Biodiversity Indicators in European Soils (EcoFINDERS), aims to address this specific issue within the EU Framework Program FP7. Here, we 1) discuss how to use the concept of ecosystem services in soil monitoring, 2) review former and ongoing monitoring schemes, and 3) present an analysis of metadata on biological indicators in some EU member states. Finally, we discuss our experiences in establishing a logical sieve approach to devise a monitoring scheme for a standardized and harmonized application at European scale.


Subject(s)
Ecosystem , Environmental Monitoring , Soil , Animals , Cost-Benefit Analysis , Environmental Monitoring/economics , Environmental Policy , Europe
SELECTION OF CITATIONS
SEARCH DETAIL
...