Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 229: 113337, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34298205

ABSTRACT

Scanning transmission electron microscopy (STEM) has become the technique of choice for quantitative characterization of atomic structure of materials, where the minute displacements of atomic columns from high-symmetry positions can be used to map strain, polarization, octahedra tilts, and other physical and chemical order parameter fields. The latter can be used as inputs into mesoscopic and atomistic models, providing insight into the correlative relationships and generative physics of materials on the atomic level. However, these quantitative applications of STEM necessitate understanding the microscope induced image distortions and developing the pathways to compensate them both as part of a rapid calibration procedure for in situ imaging, and the post-experimental data analysis stage. Here, we explore the spatiotemporal structure of the microscopic distortions in STEM using multivariate analysis of the atomic trajectories in the image stacks. Based on the behavior of principal component analysis (PCA), we develop the Gaussian process (GP)-based regression method for quantification of the distortion function. The limitations of such an approach and possible strategies for implementation as a part of in-line data acquisition in STEM are discussed. The analysis workflow is summarized in a Jupyter notebook that can be used to retrace the analysis and analyze the reader's data.

2.
Adv Sci (Weinh) ; 8(15): e2002510, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34155825

ABSTRACT

Hybrid organic-inorganic perovskites are one of the promising candidates for the next-generation semiconductors due to their superlative optoelectronic properties. However, one of the limiting factors for potential applications is their chemical and structural instability in different environments. Herein, the stability of (FAPbI3 )0.85 (MAPbBr3 )0.15 perovskite solar cell is explored in different atmospheres using impedance spectroscopy. An equivalent circuit model and distribution of relaxation times (DRTs) are used to effectively analyze impedance spectra. DRT is further analyzed via machine learning workflow based on the non-negative matrix factorization of reconstructed relaxation time spectra. This exploration provides the interplay of charge transport dynamics and recombination processes under environment stimuli and illumination. The results reveal that in the dark, oxygen atmosphere induces an increased hole concentration with less ionic character while ionic motion is dominant under ambient air. Under 1 Sun illumination, the environment-dependent impedance responses show a more striking effect compared with dark conditions. In this case, the increased transport resistance observed under oxygen atmosphere in equivalent circuit analysis arises due to interruption of photogenerated hole carriers. The results not only shed light on elucidating transport mechanisms of perovskite solar cells in different environments but also offer an effective interpretation of impedance responses.

SELECTION OF CITATIONS
SEARCH DETAIL
...