Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(32): eadi2718, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37556548

ABSTRACT

The Northwest Atlantic Ocean and Gulf of Mexico are among the fastest warming ocean regions, a trend that is expected to continue through this century with far-reaching implications for marine ecosystems. We examine the distribution of 12 highly migratory top predator species using predictive models and project expected habitat changes using downscaled climate models. Our models predict widespread losses of suitable habitat for most species, concurrent with substantial northward displacement of core habitats >500 km. These changes include up to >70% loss of suitable habitat area for some commercially and ecologically important species. We also identify predicted hot spots of multi-species habitat loss focused offshore of the U.S. Southeast and Mid-Atlantic coasts. For several species, the predicted changes are already underway, which are likely to have substantial impacts on the efficacy of static regulatory frameworks used to manage highly migratory species. The ongoing and projected effects of climate change highlight the urgent need to adaptively and proactively manage dynamic marine ecosystems.


Subject(s)
Climate Change , Ecosystem , Atlantic Ocean
2.
Ecol Appl ; 33(6): e2893, 2023 09.
Article in English | MEDLINE | ID: mdl-37285072

ABSTRACT

Species distribution models (SDMs) are becoming an important tool for marine conservation and management. Yet while there is an increasing diversity and volume of marine biodiversity data for training SDMs, little practical guidance is available on how to leverage distinct data types to build robust models. We explored the effect of different data types on the fit, performance and predictive ability of SDMs by comparing models trained with four data types for a heavily exploited pelagic fish, the blue shark (Prionace glauca), in the Northwest Atlantic: two fishery dependent (conventional mark-recapture tags, fisheries observer records) and two fishery independent (satellite-linked electronic tags, pop-up archival tags). We found that all four data types can result in robust models, but differences among spatial predictions highlighted the need to consider ecological realism in model selection and interpretation regardless of data type. Differences among models were primarily attributed to biases in how each data type, and the associated representation of absences, sampled the environment and summarized the resulting species distributions. Outputs from model ensembles and a model trained on all pooled data both proved effective for combining inferences across data types and provided more ecologically realistic predictions than individual models. Our results provide valuable guidance for practitioners developing SDMs. With increasing access to diverse data sources, future work should further develop truly integrative modeling approaches that can explicitly leverage the strengths of individual data types while statistically accounting for limitations, such as sampling biases.


Subject(s)
Biodiversity , Sharks , Animals , Fishes , Fisheries , Forecasting , Ecosystem
3.
R Soc Open Sci ; 7(3): 200049, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32269821

ABSTRACT

Cobia (Rachycentron canadum) support recreational fisheries along the US mid- and south-Atlantic states and have been recently subjected to increased fishing effort, primarily during their spawning season in coastal habitats where increasing temperatures and expanding hypoxic zones are occurring due to climate change. We therefore undertook a study to quantify the physiological abilities of cobia to withstand increases in temperature and hypoxia, including their ability to recover from exhaustive exercise. Respirometry was conducted on cobia from Chesapeake Bay to determine aerobic scope, critical oxygen saturation, ventilation volume and the time to recover from exhaustive exercise under temperature and oxygen conditions projected to be more common in inshore areas by the middle and end of this century. Cobia physiologically tolerated predicted mid- and end-of-century temperatures (28-32°C) and oxygen concentrations as low as 1.7-2.4 mg l-1. Our results indicated cobia can withstand environmental fluctuations that occur in coastal habitats and the broad environmental conditions their prey items can tolerate. However, at these high temperatures, some cobia did suffer post-exercise mortality. It appears cobia will be able to withstand near-future climate impacts in coastal habitats like Chesapeake Bay, but as conditions worsen, catch-and-release fishing may result in higher mortality than under present conditions.

4.
Conserv Physiol ; 7(1): coz026, 2019.
Article in English | MEDLINE | ID: mdl-31384467

ABSTRACT

Climate change is causing the warming and deoxygenation of coastal habitats like Chesapeake Bay that serve as important nursery habitats for many marine fish species. As conditions continue to change, it is important to understand how these changes impact individual species' behavioral and metabolic performance. The sandbar shark (Carcharhinus plumbeus) is an obligate ram-ventilating apex predator whose juveniles use Chesapeake Bay as a nursery ground up to 10 years of age. The objective of this study was to measure juvenile sandbar shark metabolic and behavioral performance as a proxy for overall performance (i.e. fitness or success) when exposed to warm and hypoxic water. Juvenile sandbar sharks (79.5-113.5 cm total length) were collected from an estuary along the eastern shore of Virginia and returned to lab where they were fitted with an accelerometer, placed in a respirometer and exposed to varying temperatures and oxygen levels. Juvenile sandbar shark overall performance declined substantially at 32°C or when dissolved oxygen concentration was reduced below 3.5 mg l-1 (51% oxygen saturation between 24-32°C). As the extent of warm hypoxic water increases in Chesapeake Bay, we expect that the available sandbar shark nursery habitat will be reduced, which may negatively impact the population of sandbar sharks in the western Atlantic as well as the overall health of the ecosystem within Chesapeake Bay.

5.
Biology (Basel) ; 8(3)2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31357558

ABSTRACT

Understanding how rising temperatures, ocean acidification, and hypoxia affect the performance of coastal fishes is essential to predicting species-specific responses to climate change. Although a population's habitat influences physiological performance, little work has explicitly examined the multi-stressor responses of species from habitats differing in natural variability. Here, clearnose skate (Rostaraja eglanteria) and summer flounder (Paralichthys dentatus) from mid-Atlantic estuaries, and thorny skate (Amblyraja radiata) from the Gulf of Maine, were acutely exposed to current and projected temperatures (20, 24, or 28 °C; 22 or 30 °C; and 9, 13, or 15 °C, respectively) and acidification conditions (pH 7.8 or 7.4). We tested metabolic rates and hypoxia tolerance using intermittent-flow respirometry. All three species exhibited increases in standard metabolic rate under an 8 °C temperature increase (Q10 of 1.71, 1.07, and 2.56, respectively), although this was most pronounced in the thorny skate. At the lowest test temperature and under the low pH treatment, all three species exhibited significant increases in standard metabolic rate (44-105%; p < 0.05) and decreases in hypoxia tolerance (60-84% increases in critical oxygen pressure; p < 0.05). This study demonstrates the interactive effects of increasing temperature and changing ocean carbonate chemistry are species-specific, the implications of which should be considered within the context of habitat.

SELECTION OF CITATIONS
SEARCH DETAIL
...