Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Sci Total Environ ; 940: 173570, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38825201

ABSTRACT

Global change may introduce fundamental alterations in phytoplankton biomass and community structure that can alter the productivity of northern lakes. In this study, we utilized Swedish and Finnish monitoring data from lakes that are spatially (135 lakes) and temporally (1995-2019, 110 lakes) extensive to assess how phytoplankton biomass (PB) of dominant phytoplankton groups related to changes in water temperature, pH and key nutrients [total phosphorus (TP), total nitrogen (TN), total organic carbon (TOC), iron (Fe)] along spatial (Fennoscandia) and temporal (25 years) gradients. Using a machine learning approach, we found that TP was the most important determinant of total PB and biomass of a specific species of Raphidophyceae - Gonyostomum semen - and Cyanobacteria (both typically with adverse impacts on food-webs and water quality) in spatial analyses, while Fe and pH were second in importance for G. semen and TN and pH were second and third in importance for Cyanobacteria. However, in temporal analyses, decreasing Fe and increasing pH and TOC were associated with a decrease in G. semen and an increase in Cyanobacteria. In addition, in many lakes increasing TOC seemed to have generated browning to an extent that significantly reduced PB. The identified discrepancy between the spatial and temporal results suggests that substitutions of data for space-for-time may not be adequate to characterize long-term effects of global change on phytoplankton. Further, we found that total PB exhibited contrasting temporal trends (increasing in northern- and decreasing in southern Fennoscandia), with the decline in total PB being more pronounced than the increase. Among phytoplankton, G. semen biomass showed the strongest decline, while cyanobacterial biomass showed the strongest increase over 25 years. Our findings suggest that progressing browning and changes in Fe and pH promote significant temporal changes in PB and shifts in phytoplankton community structures in northern lakes.


Subject(s)
Biomass , Environmental Monitoring , Lakes , Phytoplankton , Lakes/chemistry , Sweden , Finland , Climate Change , Phosphorus/analysis , Nitrogen/analysis , Cyanobacteria/growth & development
2.
Glob Chang Biol ; 30(3): e17220, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38433333

ABSTRACT

Zooplankton community composition of northern lakes is changing due to the interactive effects of climate change and recovery from acidification, yet limited data are available to assess these changes combined. Here, we built a database using archives of temperature, water chemistry and zooplankton data from 60 Scandinavian lakes that represent broad spatial and temporal gradients in key parameters: temperature, calcium (Ca), total phosphorus (TP), total organic carbon (TOC), and pH. Using machine learning techniques, we found that Ca was the most important determinant of the relative abundance of all zooplankton groups studied, while pH was second, and TOC third in importance. Further, we found that Ca is declining in almost all lakes, and we detected a critical Ca threshold in lake water of 1.3 mg L-1 , below which the relative abundance of zooplankton shifts toward dominance of Holopedium gibberum and small cladocerans at the expense of Daphnia and copepods. Our findings suggest that low Ca concentrations may shape zooplankton communities, and that current trajectories of Ca decline could promote widespread changes in pelagic food webs as zooplankton are important trophic links from phytoplankton to fish and different zooplankton species play different roles in this context.


Subject(s)
Calcium , Cladocera , Animals , Lakes , Zooplankton , Water
3.
Wetlands (Wilmington) ; 43(8): 105, 2023.
Article in English | MEDLINE | ID: mdl-38037553

ABSTRACT

Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions. Supplementary Information: The online version contains supplementary material available at 10.1007/s13157-023-01722-2.

4.
Glob Chang Biol ; 29(18): 5240-5249, 2023 09.
Article in English | MEDLINE | ID: mdl-37409538

ABSTRACT

Cyanobacterial blooms pose a significant threat to water security, with anthropogenic forcing being implicated as a key driver behind the recent upsurge and global expansion of cyanobacteria in modern times. The potential effects of land-use alterations and climate change can lead to complicated, less-predictable scenarios in cyanobacterial management, especially when forecasting cyanobacterial toxin risks. There is a growing need for further investigations into the specific stressors that stimulate cyanobacterial toxins, as well as resolving the uncertainty surrounding the historical or contemporary nature of cyanobacterial-associated risks. To address this gap, we employed a paleolimnological approach to reconstruct cyanobacterial abundance and microcystin-producing potential in temperate lakes situated along a human impact gradient. We identified breakpoints (i.e., points of abrupt change) in these time series and examined the impact of landscape and climatic properties on their occurrence. Our findings indicate that lakes subject to greater human influence exhibited an earlier onset of cyanobacterial biomass by 40 years compared to less-impacted lakes, with land-use change emerging as the dominant predictor. Moreover, microcystin-producing potential increased in both high- and low-impact lakes around the 1980s, with climate warming being the primary driver. Our findings chronicle the importance of climate change in increasing the risk of toxigenic cyanobacteria in freshwater resources.


Subject(s)
Cyanobacteria , Microcystins , Humans , Climate Change , Lakes/microbiology , Biomass , Eutrophication
5.
Nat Water ; 1: 370-380, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37389401

ABSTRACT

Wetland hydrologic connections to downstream waters influence stream water quality. However, no systematic approach for characterizing this connectivity exists. Here using physical principles, we categorized conterminous US freshwater wetlands into four hydrologic connectivity classes based on stream contact and flowpath depth to the nearest stream: riparian, non-riparian shallow, non-riparian mid-depth and non-riparian deep. These classes were heterogeneously distributed over the conterminous United States; for example, riparian dominated the south-eastern and Gulf coasts, while non-riparian deep dominated the Upper Midwest and High Plains. Analysis of a national stream dataset indicated acidification and organic matter brownification increased with connectivity. Eutrophication and sedimentation decreased with wetland area but did not respond to connectivity. This classification advances our mechanistic understanding of wetland influences on water quality nationally and could be applied globally.

6.
J Environ Manage ; 343: 118162, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37224685

ABSTRACT

The global rise of cyanobacterial blooms emphasizes the need to develop tools to manage water bodies prone to cyanobacterial dominance. Reconstructing cyanobacterial baselines and identifying environmental drivers that favour cyanobacterial dominance are important to guide management decisions. Conventional techniques for estimating cyanobacteria in lake sediments require considerable resources, creating a barrier to routine reconstructions of cyanobacterial time-series. Here, we compare a relatively simple technique based on spectral inferences of cyanobacteria using visible near-infrared reflectance spectroscopy (VNIRS) with a molecular technique based on real-time PCR quantification (qPCR) of the 16S rRNA gene conserved in cyanobacteria in 30 lakes across a broad geographic gradient. We examined the sedimentary record from two perspectives: 1) relationships throughout the entire core (without radiometric dating); 2) relationships post-1900s with the aid of radiometric dating (i.e., 210Pb). Our findings suggest that the VNIRS-based cyanobacteria technique is best suited for reconstructing cyanobacterial abundance in recent decades (i.e., circa 1990 onwards). The VNIRS-based cyanobacteria technique showed agreement with those generated using qPCR, with 23 (76%) lakes showing a strong or very strong positive relationship between the results of the two techniques. However, five (17%) lakes showed negligible relationships, suggesting cyanobacteria VNIRS requires further refinement to understand where VNIRS is unsuitable. This knowledge will help scientists and lake managers select alternative cyanobacterial diagnostics where appropriate. These findings demonstrate the utility of VNIRS, in most instances, as a valuable tool for reconstructing past cyanobacterial prevalence.


Subject(s)
Cyanobacteria , Lakes , Lakes/chemistry , Lakes/microbiology , RNA, Ribosomal, 16S , Inventions , Cyanobacteria/genetics , Time Factors , Eutrophication
7.
Oecologia ; 201(1): 183-197, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36520221

ABSTRACT

The effects of lake browning on trophic functioning of planktonic food webs are not fully understood. We studied the effects of browning on the response patterns of polyunsaturated fatty acids and n-3/n-6 ratio in seston and compared them between boreal and temperate lakes. We also compared the regional differences and the effects of lake browning on the reliance of zooplankton on heterotrophic microbial pathways and the mass fractions of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in zooplankton. Lake browning was associated with increasing phytoplankton biomass and concentrations of EPA and DHA in both temperate and boreal lakes, but the seston n-3/n-6 ratio was lower in temperate than boreal lakes, most likely due the differences in phytoplankton community composition. The browning-induced increase in phytoplankton biomass was associated with increased reliance of zooplankton on a heterotrophic microbial pathway for both cladocerans and copepods in boreal and temperate lakes. This increased reliance on the heterotrophic microbial diet was correlated with a decrease in the EPA and DHA mass fractions in temperate copepods and a decrease in the n-3/n-6 ratio in boreal cladocerans and copepods. Our results indicate that although phytoplankton responses to lake browning were similar across regions, this did not directly cascade to the next trophic level, where zooplankton responses were highly taxa- and region-specific. These results indicate that lake browning should be considered as an overarching moderator that is linked to, e.g., nutrient increases, which have more immediate consequences on trophic interactions at the phytoplankton-zooplankton interface.


Subject(s)
Fatty Acids , Plankton , Animals , Fatty Acids/metabolism , Lakes , Food Chain , Phytoplankton/metabolism , Zooplankton , Biomass
9.
Environ Sci Technol ; 56(24): 17902-17912, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36414474

ABSTRACT

The risk of human exposure to cyanotoxins is partially influenced by the location of toxin-producing cyanobacteria in waterbodies. Cyanotoxin production can occur throughout the water column, with deep water production representing a potential public health concern, specifically for drinking water supplies. Deep cyanobacteria layers are often unreported, and it remains to be seen if lower incident rates reflect an uncommon phenomenon or a monitoring bias. Here, we examine Sunfish Lake, Ontario, Canada as a case study lake with a known deep cyanobacteria layer. Cyanotoxin and other bioactive metabolite screening revealed that the deep cyanobacteria layer was toxigenic [0.03 µg L-1 microcystins (max) and 2.5 µg L-1 anabaenopeptins (max)]. The deep layer was predominantly composed of Planktothrix isothrix (exhibiting a lower cyanotoxin cell quota), with Planktothrix rubescens (exhibiting a higher cyanotoxin cell quota) found at background levels. The co-occurrence of multiple toxigenic Planktothrix species underscores the importance of routine surveillance for prompt identification leading to early intervention. For instance, microcystin concentrations in Sunfish Lake are currently below national drinking water thresholds, but shifting environmental conditions (e.g., in response to climate change or nutrient modification) could fashion an environment favoring P. rubescens, creating a scenario of greater cyanotoxin production. Future work should monitor the entire water column to help build predictive capacities for identifying waterbodies at elevated risk of developing deep cyanobacteria layers to safeguard drinking water supplies.


Subject(s)
Cyanobacteria , Drinking Water , Humans , Drinking Water/metabolism , Cyanobacteria/metabolism , Microcystins/metabolism , Water Supply , Lakes/microbiology , Ontario
10.
Harmful Algae ; 116: 102264, 2022 07.
Article in English | MEDLINE | ID: mdl-35710206

ABSTRACT

Management of cyanobacteria has become an increasingly complex venture. Cyanobacteria risks have amplified as society moves forward in an era of accelerated global changes. The cyanobacteria management "pendulum" has progressively shifted from prevention to mitigation, with management considerations often put forth after bloom formation. A universal system (i.e., one-size-fits-all management) fails to provide a management path forward due to the inherent complexities of each lake. A tailored management plan is needed: the right species at the right time in the right place (i.e., the three Rs). The three Rs represent a customizable management strategy that is flexible and informed by advances in scientific understanding to lower cyanobacteria-associated risks. Identifying thresholds in risk tolerance, where thresholds are defined by community collectives, is essential to frame cyanobacteria management targets and to decide on what management interventions are warranted.


Subject(s)
Cyanobacteria , Lakes/microbiology
11.
Glob Chang Biol ; 28(7): 2272-2285, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35014108

ABSTRACT

Ecologists collectively predict that climate change will enhance phytoplankton biomass in northern lakes. Yet there are unique variations in the structures and regulating functions of lakes to make this prediction challengeable and, perhaps, inaccurate. We used archived Landsat TM/ETM+ satellite products to estimate epilimnetic chlorophyll-a (Chl-a) concentration as a proxy for phytoplankton biomass in 281 northern temperate lakes over 28 years. We explored the influence of climate (air temperature, precipitation) and landscape proxies for nutrient sources (proportion of wetlands in a contributing catchment, size of the littoral zone, potential for wind-driven sediment resuspension as estimated by the dynamic ratio) or nutrient sinks (lake volume) in a random forest model to explain heterogeneity in peak Chl-a. Lakes with higher Chl-a (median Chl-a = 2.4 µg L-1 , n = 40) had smaller volumes (<44 × 104  m3 ) and were more sensitive to increases in temperature. In contrast, lakes with lower Chl-a (median Chl-a = 0.6 µg L-1 , n = 241) had larger volumes (≥44 × 104  m3 ), contributing catchments with smaller proportions of wetlands (<4.5% of catchment area, n = 70), smaller littoral zones (<16.4 ha, n = 137), minimal wind-driven sediment resuspension (as defined by the dynamic ratio; <0.45, n = 232), and were more sensitive to increases in precipitation. Lakes with larger volumes were generally less responsive to climate factors; however, larger volume lakes with a significant proportion of wetlands and larger littoral zones behaved similarly to lakes with smaller volumes. Our finding that lakes with different landscape properties respond differently to climate factors may help predict the susceptibility of lakes to eutrophication under changing climatic conditions.


Subject(s)
Lakes , Phytoplankton , Biomass , Chlorophyll A , Eutrophication , Lakes/chemistry
12.
Ecosystems ; 26: 1-28, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-37534325

ABSTRACT

Watershed resilience is the ability of a watershed to maintain its characteristic system state while concurrently resisting, adapting to, and reorganizing after hydrological (for example, drought, flooding) or biogeochemical (for example, excessive nutrient) disturbances. Vulnerable waters include non-floodplain wetlands and headwater streams, abundant watershed components representing the most distal extent of the freshwater aquatic network. Vulnerable waters are hydrologically dynamic and biogeochemically reactive aquatic systems, storing, processing, and releasing water and entrained (that is, dissolved and particulate) materials along expanding and contracting aquatic networks. The hydrological and biogeochemical functions emerging from these processes affect the magnitude, frequency, timing, duration, storage, and rate of change of material and energy fluxes among watershed components and to downstream waters, thereby maintaining watershed states and imparting watershed resilience. We present here a conceptual framework for understanding how vulnerable waters confer watershed resilience. We demonstrate how individual and cumulative vulnerable-water modifications (for example, reduced extent, altered connectivity) affect watershed-scale hydrological and biogeochemical disturbance response and recovery, which decreases watershed resilience and can trigger transitions across thresholds to alternative watershed states (for example, states conducive to increased flood frequency or nutrient concentrations). We subsequently describe how resilient watersheds require spatial heterogeneity and temporal variability in hydrological and biogeochemical interactions between terrestrial systems and down-gradient waters, which necessitates attention to the conservation and restoration of vulnerable waters and their downstream connectivity gradients. To conclude, we provide actionable principles for resilient watersheds and articulate research needs to further watershed resilience science and vulnerable-water management.

13.
Glob Chang Biol ; 27(23): 6294-6306, 2021 12.
Article in English | MEDLINE | ID: mdl-34520606

ABSTRACT

Global environmental changes are causing widespread nutrient depletion, declines in the ratio of dissolved inorganic nitrogen (N) to total phosphorus (DIN:TP), and increases in both water temperature and terrestrial colored dissolved organic carbon (DOC) concentration (browning) in high-latitude northern lakes. Declining lake DIN:TP, warming, and browning alter the nutrient limitation regime and biomass of phytoplankton, but how these stressors together affect the nutritional quality in terms of polyunsaturated fatty acid (PUFA) contents of the pelagic food web components remains unknown. We assessed the fatty acid compositions of seston and zooplankton in 33 lakes across south-to-north and boreal-to-subarctic gradients in Sweden. Data showed higher lake DIN:TP in the south than in the north, and that boreal lakes were warmer and browner than subarctic lakes. Lake DIN:TP strongly affected the PUFA contents-especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)-in seston, calanoids, and copepods (as a group), but not in cladocerans. The EPA+DHA contents increased by 123% in seston, 197% in calanoids, and 230% in copepods across a lake molar DIN:TP gradient from 0.17 to 14.53, indicating lower seston and copepod nutritional quality in the more N-limited lakes (those with lower DIN:TP). Water temperature affected EPA+DHA contents of zooplankton, especially cladocerans, but not seston. Cladoceran EPA+DHA contents were reduced by ca. 6% for every 1°C increase in surface water. Also, the EPA, DHA, or EPA+DHA contents of Bosmina, cyclopoids, and copepods increased in lakes with higher DOC concentrations or aromaticity. Our findings indicate that zooplankton food quality for higher consumers will decrease with warming alone (for cladocerans) or in combination with declining lake DIN:TP (for copepods), but impacts of these stressors are moderated by lake browning. Global environmental changes that drive northern lakes toward more N-limited, warmer, and browner conditions will reduce PUFA availability and nutritional quality of the pelagic food web components.


Subject(s)
Plankton , Zooplankton , Animals , Lakes , Nutritive Value , Phytoplankton
14.
Proc Natl Acad Sci U S A ; 117(42): 26145-26150, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33020284

ABSTRACT

Irrigated agriculture contributes 40% of total global food production. In the US High Plains, which produces more than 50 million tons per year of grain, as much as 90% of irrigation originates from groundwater resources, including the Ogallala aquifer. In parts of the High Plains, groundwater resources are being depleted so rapidly that they are considered nonrenewable, compromising food security. When groundwater becomes scarce, groundwater withdrawals peak, causing a subsequent peak in crop production. Previous descriptions of finite natural resource depletion have utilized the Hubbert curve. By coupling the dynamics of groundwater pumping, recharge, and crop production, Hubbert-like curves emerge, responding to the linked variations in groundwater pumping and grain production. On a state level, this approach predicted when groundwater withdrawal and grain production peaked and the lag between them. The lags increased with the adoption of efficient irrigation practices and higher recharge rates. Results indicate that, in Texas, withdrawals peaked in 1966, followed by a peak in grain production 9 y later. After better irrigation technologies were adopted, the lag increased to 15 y from 1997 to 2012. In Kansas, where these technologies were employed concurrently with the rise of irrigated grain production, this lag was predicted to be 24 y starting in 1994. In Nebraska, grain production is projected to continue rising through 2050 because of high recharge rates. While Texas and Nebraska had equal irrigated output in 1975, by 2050, it is projected that Nebraska will have almost 10 times the groundwater-based production of Texas.


Subject(s)
Agricultural Irrigation/standards , Conservation of Water Resources/methods , Crops, Agricultural/growth & development , Edible Grain/growth & development , Groundwater/analysis , Models, Theoretical , Water Supply/standards , Water Resources/supply & distribution
15.
J Glob Health ; 10(2): 020423, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33110582

ABSTRACT

BACKGROUND: The ongoing nutrition transition in sub-Saharan Africa (SSA) is exhibiting spatial heterogeneity and temporal variability leading to different forms of malnutrition burden across SSA, with some regions exhibiting the double burden of malnutrition. This study aimed to develop a predictive understanding of the malnutrition burden among women of child-bearing age. METHODS: Data from 34 SSA countries were acquired from the Demographic and Health Survey, World Bank, and Swiss Federal Institute of Technology. The SSA countries were classified into malnutrition classes based on their national prevalence of underweight, overweight, and obesity using a 10% threshold. Next, random forest analysis was used to examine the association between country-level demographic variables and the national prevalence of underweight, overweight and obesity. Finally, random forest analysis and multinomial logistic regression models were utilized to investigate the association between individual-level social and demographic variables and Body Mass Index (BMI) categories of underweight, normal weight, and combined overweight and obesity. RESULTS: Four malnutrition classes were identified: Class A had 5 countries with ≥10% of the women underweight; Class B had 11 countries with ≥10% each of underweight and overweight; Class C1 had 7 countries with ≥10% overweight; and Class C2 had 11 countries with ≥10% obesity. At the country-level, fertility rate predicted underweight, overweight and obesity prevalence, but economic indicators were also important, including the gross domestic product per capita - a measure of economic opportunity that predicted both overweight and obesity prevalence, and the GINI coefficient - a measure of economic inequality that predicted both underweight and overweight prevalence. At the individual-level, parity was a risk factor for underweight in underweight burdened countries and a risk factor for overweight/obesity in overweight/obesity burdened countries, whereas age and wealth were protective factors for underweight but risk factors for overweight/obesity. CONCLUSIONS: Beyond the effect of economic indicators, this study revealed the important role of fertility rate and parity, which may represent risk factors for both underweight and combined overweight and obesity among women of child-bearing age. Health professionals should consider combining reproductive health services with nutritional programs when addressing the challenge of malnutrition in SSA.


Subject(s)
Fertility , Malnutrition , Africa South of the Sahara , Female , Humans , Malnutrition/epidemiology , Obesity/epidemiology , Overweight/epidemiology , Prevalence , Risk Factors , Socioeconomic Factors , Thinness/epidemiology
16.
J Environ Manage ; 276: 111217, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32871464

ABSTRACT

The recent re-eutrophication of Lake Erie suggests an inadequate phosphorus management system that results in excessive loads to the lake. In response, governments in Canada and the U.S. have issued a new policy objective: 40% reductions in total phosphorus (TP) and dissolved reactive phosphorus (DRP) loads relative to 2008. The International Organization for Standardization (ISO) 31000 is a risk management standard. One of its analytical tools is the ISO 31010:2009 Bowtie Risk Analysis Tool, a tool that structures the cause-effect-impact pathway of risk but lacks the ability to capture the probability of reducing risk associated with different management systems. Here, we combined the Bowtie Risk Analysis Tool with a Bayesian belief network model to analyze the probability of different agricultural management systems of best management practices (BMPs) to achieve the 40% reductions in TP and DRP loads using different adoption rates. The commonly used soil conservation BMPs (e.g., reduced tillage) have a low probability of reducing TP and DRP to achieve the policy objective; while it can achieve the TP load reduction objective at increased adoptions rates >40%, it does not achieve the DRP load reduction objective, and in fact has the unintended consequence of increasing DRP loads. If decision makers continue to rely on soil conservation BMPs, the trade-offs between meeting objectives of different forms of phosphorus will require deciding whether the management priority is to achieve 40% load reduction objectives or to prevent further increases in DRP loads, the identified culprit causing the repeated algal blooms. In contrast, TP- and DRP-effective BMPS had higher probabilities of achieving the policy objective, especially at increased adoption rates >20%. The integration of Bayesian belief networks with the ISO risk management standard allows decision makers to determine the most probable outcomes of their management decisions, and to track and prepare for less probable outcomes, thereby decreasing the risk of failing to achieve policy objectives.


Subject(s)
Environmental Monitoring , Phosphorus , Agriculture , Bayes Theorem , Canada , Lakes , Phosphorus/analysis , Uncertainty
17.
Glob Chang Biol ; 26(9): 4966-4987, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32445590

ABSTRACT

The interacting effects of global changes-including increased temperature, altered precipitation, reduced acidification and increased dissolved organic matter loads to lakes-are anticipated to create favourable environmental conditions for cyanobacteria in northern lakes. However, responses of cyanobacteria to these global changes are complex, if not contradictory. We hypothesized that absolute and relative biovolumes of cyanobacteria (both total and specific genera) are increasing in Swedish nutrient-poor lakes and that these increases are associated with global changes. We tested these hypotheses using data from 28 nutrient-poor Swedish lakes over 16 years (1998-2013). Increases in cyanobacteria relative biovolume were identified in 21% of the study sites, primarily in the southeastern region of Sweden, and were composed mostly of increases from three specific genera: Merismopedia, Chroococcus and Dolichospermum. Taxon-specific changes were related to different environmental stressors; that is, increased surface water temperature favoured higher Merismopedia relative biovolume in low pH lakes with high nitrogen to phosphorus ratios, whereas acidification recovery was statistically related to increased relative biovolumes of Chroococcus and Dolichospermum. In addition, enhanced dissolved organic matter loads were identified as potential determinants of Chroococcus suppression and Dolichospermum promotion. Our findings highlight that specific genera of cyanobacteria benefit from different environmental changes. Our ability to predict the risk of cyanobacteria prevalence requires consideration of the environmental condition of a lake and the sensitivities of the cyanobacteria genera within the lake. Regional patterns may emerge due to spatial autocorrelations within and among lake history, rates and direction of environmental change and the niche space occupied by specific cyanobacteria.


Subject(s)
Cyanobacteria , Lakes , Nutrients , Phosphorus/analysis , Sweden
18.
J Phycol ; 56(2): 458-468, 2020 04.
Article in English | MEDLINE | ID: mdl-31875965

ABSTRACT

The chemical form of nitrogen (N) is deemed to be decisive in shaping the composition of the primary producer community. Recently, there has been a shift in the dominant form of N delivered to agricultural landscapes. Urea-based fertilizers are a mainstay in modern agriculture, and their ubiquitous use has increased the likelihood of urea export to nearby freshwaters. The shift to urea fertilizers has coincided with the recent expansion of cyanobacteria harmful algal blooms (cyanoHABs). This study investigated N drawdown patterns between two major freshwater phytoplankton groups-chlorophytes and cyanobacteria. Experiments were designed to understand if different patterns of N drawdown occurred among taxa and the potential synergistic effects of multiple N substrates. Nitrate (NO3- ), ammonium (NH4+ ), and urea were supplied in a series of paired combinations, and N concentrations were monitored to track N drawdowns. We did not find significant differences between phytoplankton classes when supplied with a single N substrate. However, we found that when N substrates were supplied in combination, significant differences in N drawdown patterns were observed. Urea was consumed more rapidly among cyanobacteria, being drawn down at significantly higher rates relative to inorganic N substrates. In contrast, inorganic N substrates were drawn down more rapidly among chlorophytes relative to urea. Our findings support the emerging urea-cyanoHAB link and the potential importance of urea in freshwater eutrophication. As society becomes increasingly dependent on urea for agricultural crops, the need to understand how urea influences phytoplankton community composition may be instrumental in predicting bloom dynamics.


Subject(s)
Ammonium Compounds , Cyanobacteria , Lakes , Nitrogen , Phytoplankton , Urea
19.
Toxins (Basel) ; 11(11)2019 10 26.
Article in English | MEDLINE | ID: mdl-31717743

ABSTRACT

Cyanobacterial blooms increasingly impair inland waters, with the potential for a concurrent increase in cyanotoxins that have been linked to animal and human mortalities. Microcystins (MCs) are among the most commonly detected cyanotoxins, but little is known about the distribution of different MC congeners despite large differences in their biomagnification, persistence, and toxicity. Using raw-water intake data from sites around the Great Lakes basin, we applied multivariate canonical analyses and regression tree analyses to identify how different congeners (MC-LA, -LR, -RR, and -YR) varied with changes in meteorological and nutrient conditions over time (10 years) and space (longitude range: 77°2'60 to 94°29'23 W). We found that MC-LR was associated with strong winds, warm temperatures, and nutrient-rich conditions, whereas the equally toxic yet less commonly studied MC-LA tended to dominate under intermediate winds, wetter, and nutrient-poor conditions. A global synthesis of lake data in the peer-reviewed literature showed that the composition of MC congeners differs among regions, with MC-LA more commonly reported in North America than Europe. Global patterns of MC congeners tended to vary with lake nutrient conditions and lake morphometry. Ultimately, knowledge of the environmental factors leading to the formation of different MC congeners in freshwaters is necessary to assess the duration and degree of toxin exposure under future global change.


Subject(s)
Bacterial Toxins/analysis , Climate , Environmental Monitoring/methods , Lakes/chemistry , Lakes/microbiology , Marine Toxins/analysis , Microcystins/analysis , Bacterial Toxins/toxicity , Europe , Marine Toxins/toxicity , Microcystins/toxicity , Nitrogen Compounds/analysis , United States
20.
Ecol Appl ; 29(7): e01974, 2019 10.
Article in English | MEDLINE | ID: mdl-31310674

ABSTRACT

Winter is an understudied but key period for the socioecological systems of northeastern North American forests. A growing awareness of the importance of the winter season to forest ecosystems and surrounding communities has inspired several decades of research, both across the northern forest and at other mid- and high-latitude ecosystems around the globe. Despite these efforts, we lack a synthetic understanding of how winter climate change may impact hydrological and biogeochemical processes and the social and economic activities they support. Here, we take advantage of 100 years of meteorological observations across the northern forest region of the northeastern United States and eastern Canada to develop a suite of indicators that enable a cross-cutting understanding of (1) how winter temperatures and snow cover have been changing and (2) how these shifts may impact both ecosystems and surrounding human communities. We show that cold and snow covered conditions have generally decreased over the past 100 years. These trends suggest positive outcomes for tree health as related to reduced fine root mortality and nutrient loss associated with winter frost but negative outcomes as related to the northward advancement and proliferation of forest insect pests. In addition to effects on vegetation, reductions in cold temperatures and snow cover are likely to have negative impacts on the ecology of the northern forest through impacts on water, soils, and wildlife. The overall loss of coldness and snow cover may also have negative consequences for logging and forest products, vector-borne diseases, and human health, recreation, and tourism, and cultural practices, which together represent important social and economic dimensions for the northern forest region. These findings advance our understanding of how our changing winters may transform the socioecological system of a region that has been defined by the contrasting rhythm of the seasons. Our research also identifies a trajectory of change that informs our expectations for the future as the climate continues to warm.


Subject(s)
Ecosystem , Snow , Canada , Climate Change , Cold Temperature , Forests , Humans , New England , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...