Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 131(4): 929-945, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29307117

ABSTRACT

KEY MESSAGE: Cd is a toxic metal, whilst Zn is an essential for plant and human health. Both can accumulate in potato tubers. We examine the genetic control of this process. The aim of this study was to map quantitative trait loci (QTLs) influencing tuber concentrations of cadmium (Cd) and zinc (Zn). We developed a segregating population comprising 188 F1 progeny derived from crossing two tetraploid cultivars exhibiting divergent tuber-Cd-accumulation phenotypes. These progeny were genotyped using the SolCap 8303 SNP array, and evaluated for Cd, Zn, and maturity-related traits. Linkage and QTL mapping were performed using TetraploidSNPMap software, which incorporates all allele dosage information. The final genetic map comprised 3755 SNP markers with average marker density of 2.94 per cM. Tuber-Cd and Zn concentrations were measured in the segregating population over 2 years. QTL mapping identified four loci for tuber-Cd concentration on chromosomes 3, 5, 6, and 7, which explained genetic variance ranging from 5 to 33%, and five loci for tuber-Zn concentration on chromosome 1, 3, 5, and, 6 explaining from 5 to 38% of genetic variance. Among the QTL identified for tuber-Cd concentration, three loci coincided with tuber-Zn concentration. The largest effect QTL for both tuber-Cd and Zn concentration coincided with the maturity locus on chromosome 5 where earliness was associated with increased tuber concentration of both metals. Coincident minor-effect QTL for Cd and Zn sharing the same direction of effect was also found on chromosomes 3 and 6, and these were unrelated to maturity The results indicate partially overlapping genetic control of tuber-Cd and Zn concentration in the cross, involving both maturity-related and non-maturity-related mechanisms.


Subject(s)
Cadmium/analysis , Plant Tubers/chemistry , Quantitative Trait Loci , Solanum tuberosum/genetics , Zinc/analysis , Chromosome Mapping , Crosses, Genetic , Genetic Linkage , Genotype , Phenotype , Polymorphism, Single Nucleotide , Solanum tuberosum/chemistry , Tetraploidy
2.
Environ Sci Pollut Res Int ; 24(35): 27384-27391, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28975479

ABSTRACT

Potatoes grown in soil with high Cd concentrations can accumulate high levels of Cd in the tubers. Although there is significant environmental variation involved in the trait of crop uptake of Cd, there are also distinctive cultivar differences. In order to understand this differential Cd accumulation mechanism, two potato cultivars were chosen that accumulate high and low levels of Cd in tubers. The patterns of Cd concentration, Cd content and dry weight accumulation of the two cultivars were examined at different stages of plant growth. The data suggest that differences in total Cd uptake and in Cd partitioning among organs are the mechanisms governing differential Cd-tuber accumulation in the two cultivars. The low tuber-Cd accumulator exhibited lower root-to-shoot and shoot-to-tuber translocation driven by higher root and shoot biomass that retained more Cd in roots and shoots, respectively, reducing its movement to the tubers. Higher remobilization and more efficient tuber loading was observed in the high tuber-Cd accumulator, indicating that remobilization of Cd from leaves to tubers was a major factor, not only in tuber-Cd loading, but also in the establishment of differential tuber-Cd levels. Regardless of cultivar differences, the concentration of Cd in the tuber was very low compared to that in other organs suggesting that, despite its high phloem mobility, Cd tends to be sequestered in the shoots.


Subject(s)
Cadmium/analysis , Plant Tubers/drug effects , Soil Pollutants/analysis , Solanum tuberosum/drug effects , Biological Transport , Biomass , Phenotype , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Tubers/metabolism , Soil/chemistry , Solanum tuberosum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...