Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomater Appl ; 36(3): 419-427, 2021 09.
Article in English | MEDLINE | ID: mdl-33866852

ABSTRACT

Elastin-like polypeptides (ELP) have been used as a genetically-engineered, biocompatible substitute for elastin. Cell culture coatings prepared using ELP conjugated to low molecular weight polyethyleneimine (PEI) entices cells to form three-dimensional cellular aggregates that mimic their in vivo counterparts. This study seeks to control the deposition of the ELP and ELP-PEI molecules to control the roughness of the final coatings. The two polymers were coated onto three different substrates (glass, polystyrene, tissue-culture polystyrene) and the solution environment was altered by changing the polymer concentration (0.5, 1.0, 1.5 mg/mL) and/or salt concentration (None, 0.2 M phosphate buffered saline) for a total of 36 conditions. Atomic force microscopy (AFM) was used to measure the average roughness (Ra) of the samples and found that ELP coated samples had a higher Ra than their ELP-PEI counterparts. The coatings were tested for stability by performing cell culture media changes every three days for 11 days. AFM showed that the average roughness of the tested samples increased with each media change. To address this, the surfaces were crosslinked using hexamethyl diisocyanate, which minimized the change in surface roughness even when subjected to an intense sonication process. This study provides parameters to achieve elastin-based coatings with controlled roughness that can be used to support stable, long-term in vitro cell culture.


Subject(s)
Coated Materials, Biocompatible/chemistry , Elastin/chemistry , Peptides/chemistry , Cell Culture Techniques , Cross-Linking Reagents/chemistry , Microscopy, Atomic Force , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...