Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 698060, 2021.
Article in English | MEDLINE | ID: mdl-34456939

ABSTRACT

Drought poses a major challenge to the production of potatoes worldwide. Climate change is predicted to further aggravate this challenge by intensifying potato crop exposure to increased drought severity and frequency. There is an ongoing effort to adapt our production systems of potatoes through the development of drought-tolerant cultivars that are appropriately engineered for the changing environment. The breeding of drought-tolerant cultivars can be approached through the identification of drought-related physiological and biochemical traits and their deployment in new potato cultivars. Thus, the main objective of this study was to develop a method to identify and characterize the drought-tolerant potato genotypes and the related key traits. To achieve this objective, first we studied 56 potato genotypes including 54 cultivars and 2 advanced breeding lines to assess drought tolerance in terms of tuber yield in the greenhouse experiment. Drought differentially reduced tuber yield in all genotypes. Based on their capacity to maintain percent tuber yield under drought relative to their well-watered controls, potato genotypes differed in their ability to tolerate drought. We then selected six genotypes, Bannock Russet, Nipigon, Onaway, Denali, Fundy, and Russet Norkotah, with distinct yield responses to drought to further examine the physiological and biochemical traits governing drought tolerance. The drought-induced reduction in tuber yield was only 15-20% for Bannock Russet and Nipigon, 44-47% for Onaway and Denali, and 83-91% for Fundy and Russet Norkotah. The tolerant genotypes, Bannock Russet and Nipigon, exhibited about a 2-3-fold increase in instantaneous water-use efficiency (WUE) under drought as compared with their well-watered controls. This stimulation was about 1.8-2-fold for moderately tolerant genotypes, Onaway and Denali, and only 1.5-fold for sensitive genotypes, Fundy, and Russet Norkotah. The differential stimulation of instantaneous WUE of tolerant and moderately tolerant genotypes vs. sensitive genotypes was accounted for by the differential suppression of the rates of photosynthesis, stomatal conductance, and transpiration rates across genotypes. Potato genotypes varied in their response to leaf protein content under drought. We suggest that the rates of photosynthesis, instantaneous WUE, and leaf protein content can be used as the selection criteria for the drought-tolerant potato genotypes.

2.
Arch Virol ; 166(11): 3157-3163, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34396472

ABSTRACT

The genus Coleviroid, family Pospiviroidae, comprises six known viroids, all infecting Plectranthus scutellarioides (Coleus blumei; coleus). In 2017, a novel viroid-like RNA sequence that shares ca. 65% identity with Coleus blumei viroid 1 (CbVd-1) was identified in a coleus cultivar infected by multiple coleviroids. Further sequence and secondary structure analyses are consistent with the discovery of a seventh viroid in the genus Coleviroid: tentatively named "Coleus blumei viroid 7" (CbVd-7). The viroid appears to be the product of a natural recombination event between CbVd-1 and Coleus blumei viroid 5. We prove CbVd-7 to be infectious and in turn demonstrate the ability of all known coleviroid left- and right-arm segments to recombine. With a length of 234 nucleotides, this is the smallest viroid described to date.


Subject(s)
Plectranthus/virology , Reassortant Viruses/genetics , Recombination, Genetic , Viroids/genetics , Genome, Viral , Phylogeny , Viroids/isolation & purification , Viroids/pathogenicity
3.
Plant Dis ; 105(4): 948-957, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32915119

ABSTRACT

In this study, a set of duplex reverse transcription PCR (RT-PCR)-mediated high-resolution DNA melting (HRM) analyses for simultaneous detection of potato mop-virus (PMTV) and its protist vector, Spongospora subterranea f. sp. subterranea (Sss), was developed. The infestation of soil by PMTV was detected with a tobacco-based baiting system. Total RNA extracted from the soil led to successful RT-PCR gel electrophoresis detection of both PMTV and Sss. To facilitate more efficient detection, newly designed primer pairs for PMTV RNA species (i.e., RNA-Rep, RNA-CP, and RNA-TGB) were analyzed together with the existing Sss primers via real-time RT-PCR. The resulting amplicons exhibited melting profiles that could be readily differentiated. Under duplex RT-PCR format, all PMTV and Sss primer combinations led to successful detection of respective PMTV RNA species and Sss in the samples by HRM analyses. When the duplex HRM assay was applied to soil samples collected from six fields at four different sites in New Brunswick, Canada, positive detection of PMTV or Sss was found in 63 to 100% samples collected from fields in which PMTV-infected tubers had been observed. In contrast, the samples from fields where neither PMTV- nor Sss-infected tubers had been observed resulted in negative detection by the assay. Bait tobacco bioassay for PMTV and Sss produced similar results. Of the soil samples collected from PMTV-infested fields, 63 to 83% and 100% led to PMTV and Sss infections in the bait tobacco plants, respectively, whereas no PMTV- or Sss-infected plants were obtained from soil samples collected from PMTV- and Sss-free fields.


Subject(s)
Plant Viruses , Canada , Nucleic Acid Denaturation , Plant Diseases , Plant Viruses/genetics , Soil
4.
Arch Virol ; 165(4): 923-935, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32128611

ABSTRACT

Strawberry mild yellow edge virus (SMYEV) is a member of the genus Potexvirus, family Alphaflexiviridae. It is one of the most common pathogenic viruses infecting cultivated strawberries worldwide. In this study, we investigated the genetic diversity of SMYEV in strawberry fields that were severely affected by strawberry decline disease in the eastern Canadian provinces of New Brunswick, Nova Scotia, Prince Edward Island and Quebec. A total of 134 SMYEV coat protein (CP) gene sequences, representing 85 nucleic acid haplotypes, were identified in 56 field samples. A highly divergent SMYEV population was found in all four provinces, but there was little genetic differentiation among the populations, and moreover, the Canadian SMYEV isolates formed a unique dissimilar, genetically divergent population group when compared to those reported in other countries. Phylogenetic analysis revealed three new SMYEV subclades that consisted mainly of Canadian variants and were composed of 76 sequence haplotypes (76/85, 88%). Mixed infections by different SMYEV variants were observed in 38 samples (38/56, 68%). Evolutionary analysis suggested that the SMYEV strains in eastern Canada possibly originated outside of Canada but adapted to conditions in the region through genetic mutations.


Subject(s)
Fragaria/virology , Genetic Variation , Plant Diseases/virology , Potexvirus/genetics , Canada , Capsid Proteins/genetics , Evolution, Molecular , Genome, Viral , Phylogeny , Potexvirus/classification , Potexvirus/isolation & purification
5.
Front Plant Sci ; 10: 563, 2019.
Article in English | MEDLINE | ID: mdl-31139199

ABSTRACT

Global climate change in the form of extreme heat and drought poses a major challenge to sustainable crop production by negatively affecting plant performance and crop yield. Such negative impact on crop yield is likely to be aggravated in future because continued greenhouse gas emissions will cause further rise in temperature leading to increased evapo-transpiration and drought severity, soil salinity as well as insect and disease threats. This has raised a major challenge for plant scientists on securing global food demand, which urges an immediate need to enhance the current yield of major food crops by two-fold to feed the increasing population. As a fourth major food crop, enhancing potato productivity is important for food security of an increasing population. However, potato plant is highly prone to high temperature, drought, soil salinity, as well as insect and diseases. In order to maintain a sustainable potato production, we must adapt our cultivation practices and develop stress tolerant potato cultivars that are appropriately engineered for changing environment. Yet the lack of data on the underlying mechanisms of potato plant resistance to abiotic and biotic stress and the ability to predict future outcomes constitutes a major knowledge gap. It is a challenge for plant scientists to pinpoint means of improving tuber yield under increasing CO2, high temperature and drought stress including the changing patterns of pest and pathogen infestations. Understanding stress-related physiological, biochemical and molecular processes is crucial to develop screening procedures for selecting crop cultivars that can better adapt to changing growth conditions. Elucidation of such mechanism may offer new insights into the identification of specific characteristics that may be useful in breeding new cultivars aimed at maintaining or even enhancing potato yield under changing climate. This paper discusses the recent progress on the mechanism by which potato plants initially sense the changes in their surrounding CO2, temperature, water status, soil salinity and consequently respond to these changes at the molecular, biochemical and physiological levels. We suggest that future research needs to be concentrated on the identification and characterization of signaling molecules and target genes regulating stress tolerance and crop yield potential.

6.
Arch Virol ; 161(6): 1657-63, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26984225

ABSTRACT

In this study, we report the genome sequence of five isolates of strawberry mottle virus (family Secoviridae, order Picornavirales) from strawberry field samples with decline symptoms collected in Eastern Canada. The Canadian isolates differed from the previously characterized European isolate 1134 in that they had a longer RNA2, resulting in a 239-amino-acid extension of the C-terminal region of the polyprotein. Sequence analysis suggests that reassortment and recombination occurred among the isolates. Phylogenetic analysis revealed that the Canadian isolates are diverse, grouping in two separate branches along with isolates from Europe and the Americas.


Subject(s)
Fragaria/virology , Plant Diseases/virology , Plant Viruses/genetics , RNA Viruses/genetics , Canada , Europe , Genetic Variation , Genome, Viral , Phylogeny , Plant Viruses/classification , Plant Viruses/isolation & purification , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA, Viral/genetics , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...