Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 9: 907-935, 2018.
Article in English | MEDLINE | ID: mdl-29600152

ABSTRACT

Healing is an intrinsic ability in the incredibly biodiverse populations of the plant and animal kingdoms created through evolution. Plants and animals approach healing in similar ways but with unique pathways, such as damage containment in plants or clotting in animals. After analyzing the examples of healing and defense mechanisms found in living nature, eight prevalent mechanisms were identified: reversible muscle control, clotting, cellular response, layering, protective surfaces, vascular networks or capsules, exposure, and replenishable functional coatings. Then the relationship between these mechanisms, nature's best (evolutionary) methods of mitigating and healing damage, and existing technology in self-healing materials are described. The goals of this top-level overview are to provide a framework for relating the behavior seen in living nature to bioinspired materials, act as a resource to addressing the limitations/problems with existing materials, and open up new avenues of insight and research into self-healing materials.

2.
J Colloid Interface Sci ; 518: 284-297, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29471205

ABSTRACT

The mechanical properties, corrosion-resistance, and aesthetics of stainless steel make it one of the most important and widely used materials worldwide in the construction, food, and transportation industries just to name a few. In this paper we demonstrate how these properties can be further enhanced by changing the hydrophilic stainless steel surface to be superhydrophilic, superhydrophobic, or superliquiphobic. Creation of these functional surfaces requires hierarchical roughness and chemistry. Roughness is created using various pathways including sandblasting, chemical etching, and nanocomposite coatings. Surface chemistry is controlled using methylchlorosilane, nanoparticles in methylphenyl silicone, and fluorosilane treatment. The broad approach allows for direct comparisons of these pathways. Resulting treatments can create stainless steel surfaces with a hexadecane contact angle of 155° and tilt angle of 7-10°. Discussions of rust-avoidance and coating through condensation reactions are included. Enhanced properties of self-cleaning behavior, anti-icing behavior, wear resistance, and bending resistance are demonstrated on stainless steel 304 L. Stainless steel 430, which is more corrosion prone than stainless steel 304 L, is then used to demonstrate transferability of the treatments and corrosion resistance imparted through superliquiphobicity.

3.
J Colloid Interface Sci ; 470: 31-38, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26928062

ABSTRACT

Pickering emulsions offer an established method of stabilizing oil-in-water emulsions as either an alternative to surfactants or as an additive together with surfactants, providing greater colloidal stability even at low particle concentrations. This work presents a novel experimental approach to study the influence of several system parameters on the effectiveness of Pickering emulsion systems. Specifically, a dodecane oil drop stabilized by hard carbon microspheres in an aqueous saline solution is used as a model system to obtain both quantitative and qualitative information on the effectiveness of the microspheres as a function of their surface wetting properties. The test setup, in which a macroscopic oil drop is brought into contact with a test surface in a controlled motion and environment, allows for several aspects of the test (for e.g., oil drop size, approach velocity, normal force, solution ionic strength, temperature, pH, and presence of surfactants) to be potentially controlled and studied precisely. To demonstrate the capabilities of the experimental set-up, hard carbon microspheres are modified with a poly(styrenesulfonate) shell through ATRP in order to tune the wettability of the particles through choice of polymer, which are then used to stabilize a dodecane oil drop in an aqueous saline solution. The particles effectively form a steric barrier preventing the spreading of an oil drop on hydrophobic surfaces and also preventing the coalescence of stabilized oil drops.

4.
Langmuir ; 32(4): 1009-17, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26752016

ABSTRACT

The wetting behavior of a surface depends on both its surface chemistry and the characteristics of surface morphology and topography. Adding structure to a flat hydrophobic or oleophobic surface increases the effective contact angle and thus the hydrophobicity or oleophobicity of the surface, as exemplified by the lotus leaf analogy. We describe a simple strategy to introduce micropatterned roughness on surfaces of soft materials, utilizing the template of hexagonally packed pores of breath figures as molds. The generated inverse replicas represent micron scale patterned beadlike protrusions on hydrogel surfaces. This added roughness imparts superoleophobic properties (contact angle of the order of 150° and greater) to an inherently oleophobic flat hydrogel surface, when submerged. The introduced pattern on the hydrogel surface changes morphology as it swells in water to resemble morphologies remarkably analogous to the compound eye. Analysis of the wetting behavior using the Cassie-Baxter approximation leads to estimation of the contact angle in the superoleophobic regime and in agreement with the experimental value.

5.
ACS Appl Mater Interfaces ; 7(32): 17587-91, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26223011

ABSTRACT

We present an exploratory study of the tribological properties and mechanisms of porous polymer surfaces under applied loads in aqueous media. We show how it is possible to change the lubrication regime from boundary lubrication to hydrodynamic lubrication even at relatively low shearing velocities by the addition of vertical pores to a compliant polymer. It is hypothesized that the compressed, pressurized liquid in the pores produces a repulsive hydrodynamic force as it extrudes from the pores. The presence of the fluid between two shearing surfaces results in low coefficients of friction (µ ≈ 0.31). The coefficient of friction is reduced further by using a boundary lubricant. The tribological properties are studied for a range of applied loads and shear velocities to demonstrate the potential applications of such materials in total joint replacement devices.


Subject(s)
Hydrodynamics , Lubrication , Dimethylpolysiloxanes/chemistry , Elastic Modulus , Polymers/chemistry , Porosity , Sodium Dodecyl Sulfate/chemistry , Surface Properties , Water/chemistry
6.
Langmuir ; 31(11): 3385-90, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25723337

ABSTRACT

During a marine oil spill, the oil can interact with and potentially wet a variety of surfaces such as corals, skin/shells of marine animals, and bird feathers. We present both qualitative and quantitative data for the interaction of a dodecane droplet submerged in water with surfaces varying in both surface energy and roughness. Flat, unstructured silicon surfaces with water in air contact angles of 0°, 43°, 66°, 87°, 96°, and 108° were tested first to obtain base readings, after which photolithography was used to introduce structured surfaces representative of marine biological systems. We find that the more hydrophilic a surface, the less prone it is to oil contamination. Also, the Cassie-Baxter approximation holds up for submerged oil in water systems and can be used to predict contact angles of oil on solid rough surfaces submerged in an aqueous environment. Furthermore, the addition of surface structure, even on strongly hydrophobic (oleophilic) surfaces, greatly reduced (≈75% reduction in F(adhesion)) a surface's affinity for oil.

SELECTION OF CITATIONS
SEARCH DETAIL
...