Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Toxics ; 9(10)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34678946

ABSTRACT

Tobacco use is the leading cause of preventable death worldwide and is highly addictive. Nicotine is the main addictive compound in tobacco, but less is known about other components and additives that may contribute to tobacco addiction. The zebrafish embryo (ZFE) has been shown to be a good model to study the toxic effects of chemicals on the neurological system and thus may be a promising model to study behavioral markers of nicotine effects, which may be predictive for addictiveness. We aimed to develop a testing protocol to study nicotine tolerance in ZFE using a locomotion test with light-dark transitions as behavioral trigger. Behavioral experiments were conducted using three exposure paradigms: (1) Acute exposure to determine nicotine's effect and potency. (2) Pre-treatment with nicotine dose range followed by a single dose of nicotine, to determine which pre-treatment dose is sufficient to affect the potency of acute nicotine. (3) Pre-treatment with a single dose combined with acute exposure to a dose range to confirm the hypothesized decreased potency of the acute nicotine exposure. These exposure paradigms showed that (1) acute nicotine exposure decreased ZFE activity in response to dark conditions in a dose-dependent fashion; (2) pre-treatment with increasing concentrations dose-dependently reversed the effect of acute nicotine exposure; and (3) a fixed pre-treatment dose of nicotine induced a decreased potency of the acute nicotine exposure. This effect supported the induction of tolerance to nicotine by the pre-treatment, likely through neuroadaptation. The interpretation of these effects, particularly in view of prediction of dependence and addictiveness, and suitability of the ZFE model to test for such effects of other compounds than nicotine, are discussed.

2.
J Breath Res ; 15(1): 016010, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33027777

ABSTRACT

Smokers are exposed to more than 6000 (toxic) smoke components including volatile organic compounds (VOCs). In this study VOCs levels in headspace of blood and exhaled breath, in the mainstream smoke of three types of cigarettes of one brand varying in declared tar, nicotine and carbon monoxide (TNCO) yields are investigated. The objective was to identify whether VOC levels correlate with TNCO yields of cigarettes smoked according to ISO 3308. Our data show that smoking regular and low-TNCO cigarettes result in comparable levels of VOCs in blood and exhaled breath. Hence, declared TNCO-yields as determined with the ISO 3308 machine smoking protocol are irrelevant for predicting VOC exposure upon human smoking. Venous blood and exhaled breath were sampled from 12 male volunteers directly before and 10 min after smoking cigarettes on 3 d (day 1 Marlboro Red (regular), day 2 Marlboro Prime (highly ventilated, low-TNCO), day 3 Marlboro Prime with blocked filter ventilation (taped)). Upon smoking, the levels of toluene, ethylbenzene, m/p-xylene, o-xylene, and 2,5-dimethylfuran in both headspace of venous blood and exhaled breath increase within the same range for all three cigarette types smoked. However, no strong correlation was found between VOC levels in exhaled breath and VOC levels in headspace of blood because of variations between the individual smoking volunteers. More research is required in order to use exhaled breath sampling as a non-invasive quantitative marker for volatile toxicants from cigarette smoke exposure of different brands.


Subject(s)
Breath Tests , Exhalation , Nicotine/adverse effects , Smoking , Tobacco Products , Volatile Organic Compounds/blood , Adolescent , Adult , Benzene/analysis , Carbon Monoxide/analysis , Humans , Male , Nicotiana , Young Adult
3.
Article in English | MEDLINE | ID: mdl-31052162

ABSTRACT

This works aimed to assess the health risks of e-cigarette use to bystanders. The exhaled breath of 17 volunteers was collected while they were vaping, and the levels of nicotine, propylene glycol, glycerol, formaldehyde, acetaldehyde, acrolein, tobacco-specific nitrosamines (TSNAs), and heavy metals were analyzed. Increased levels of nicotine, propylene glycol, TSNAs and copper were found in the exhaled breath of the volunteers. From these measurements, bystander exposure was estimated for two different scenarios: (1) A non-ventilated car with two e-cigarette users and (2) a ventilated office with one e-cigarette user. Our results show that bystanders may experience irritation of the respiratory tract as a result of exposure to propylene glycol and glycerol. Systemic effects of nicotine should also be expected if nicotine-containing e-liquid is used, including palpitations, and an increase of the systolic blood pressure. Furthermore, due to the presence of TSNAs in some e-liquids, an increased risk of tumors could not be excluded for the 'car' scenario. While e-cigarette use can clearly have effects on the health of bystanders, the risks depend on the rate of ventilation, dimensions of the room, and vaping behavior of the e-cigarette user. The presence of TSNAs in e-liquids can be avoided, which will prevent the most serious effect identified (increased risk of tumors).


Subject(s)
Air Pollution, Indoor/analysis , Electronic Nicotine Delivery Systems , Vaping/adverse effects , Adult , Air Pollution, Indoor/adverse effects , Exhalation , Female , Humans , Male , Middle Aged , Netherlands , Risk Assessment , Young Adult
4.
Reprod Toxicol ; 23(3): 407-13, 2007.
Article in English | MEDLINE | ID: mdl-17229545

ABSTRACT

Breast cancer is a major public health problem among women worldwide. Phytoestrogens and dietary fat composition are being investigated to elucidate the role of nutrition in breast cancer risk. Both epidemiological and rodent studies suggest that the chemopreventive effect of phytoestrogens depends on timing of exposure. We investigated spontaneous mammary tumor development in female heterozygous MMTV/c-neu (Tg.NK) mice upon isoflavone exposure on background diets rich in either n-6 or n-3 polyunsaturated fatty acids (PUFAs). Three different exposure protocols were used, either from conception to weaning, or from weaning onwards, or lifelong. Mice fed diets high in n-3 PUFAs developed mammary tumors 15 weeks later than mice fed n-6 PUFA diets. In the latter mice, isoflavone exposure from weaning onwards resulted in a significant decrease in tumor incidence and a delay in tumor onset. Therefore, the effects of phytoestrogen exposure on tumor formation appear to depend on the composition of the background diet and on the timing of exposure within the life cycle.


Subject(s)
Dietary Fats/toxicity , Isoflavones/pharmacology , Mammary Neoplasms, Animal/prevention & control , Phytoestrogens/pharmacology , Animals , Body Weight/drug effects , Dietary Fats/administration & dosage , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/toxicity , Fatty Acids, Omega-6/administration & dosage , Fatty Acids, Omega-6/toxicity , Female , Humans , Isoflavones/administration & dosage , Male , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mammary Neoplasms, Animal/chemistry , Mammary Neoplasms, Animal/genetics , Mice , Mice, Transgenic , Phytoestrogens/administration & dosage , Postpartum Period , Pregnancy , Receptor, ErbB-2/genetics , Time Factors , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...