Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Healthc Mater ; 7(18): e1800605, 2018 09.
Article in English | MEDLINE | ID: mdl-30058274

ABSTRACT

In vivo monitoring of tissue-engineered constructs is important to assess their integrity, remodeling, and degradation. However, this is challenging when the contrast with neighboring tissues is low, necessitating labeling with contrast agents (CAs), but current CAs have limitations (i.e., toxicity, negative contrast, label instability, and/or inappropriate size). Therefore, a naturally derived hemin-L-lysine (HL) complex is used as a potential CA to label collagen-based templates for magnetic resonance imaging (MRI). Labeling does not change the basic characteristics of the collagen templates. When hybrid templates composed of collagen type I reinforced with degradable polymers are subcutaneously implanted in mice, longitudinal visualization by MRI is possible with good contrast and in correlation with template remodeling. In contrast, unlabeled collagen templates are hardly detectable and the fate of these templates cannot be monitored by MRI. Interestingly, tissue remodeling and vascularization are enhanced within HL-labeled templates. Thus, HL labeling is presented as a promising universal imaging marker to label tissue-engineered implants for MRI, which additionally seems to accelerate tissue regeneration.


Subject(s)
Collagen Type I/chemistry , Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Tissue Engineering/methods , Animals , Female , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred BALB C , Phenotype , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL