Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Neurosci ; 56(2): 320-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25820671

ABSTRACT

Brain monoamines (serotonin, norepinephrine, dopamine, and histamine) play an important role in emotions, cognition, and pathophysiology and treatment of mental disorders. The interactions between serotonin, norepinephrine, and dopamine were studied in numerous works; however, histamine system received less attention. The aim of this study was to investigate the interactions between histamine and other monoamines, using in vivo microdialysis and electrophysiology. It was found that the inverse agonist of histamine-3 receptors, thioperamide, increased the firing activity of dopamine neurons in the ventral tegmental area. Selective agonist of histamine-3 receptors, immepip, reversed thiperamide-induced stimulation of firing activity of dopamine neurons. The firing rates of serotonin and norpeinephrine neurons were not attenuated by immepip or thioperamide. Thioperamide robustly and significantly increased extracellular concentrations of serotonin, norepinephrine, and dopamine in the rat prefrontal cortex and slightly increased norepinephrine and dopamine levels in the tuberomammillary nucleus of the hypothalamus. It can be concluded that histamine stimulates serotonin, norepinephrine, and dopamine transmission in the brain. Modulation of firing of dopamine neurons is a key element in functional interactions between histamine and other monoamines. Antagonists of histamine-3 receptors, because of their potential ability to stimulate monoamine neurotransmission, might be beneficial in the treatment of mental disorders.


Subject(s)
Action Potentials , Brain/metabolism , Dopamine/metabolism , Histamine/metabolism , Norepinephrine/metabolism , Serotonin/metabolism , Animals , Brain/physiology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Histamine Agonists/pharmacology , Rats , Rats, Wistar , Receptors, Histamine H3/metabolism
2.
Eur J Neurosci ; 34(11): 1747-55, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22050612

ABSTRACT

The current study aimed to investigate the effect of histamine-3 (H(3)) receptors, expressed in the tuberomammillary nucleus (TMN) of the hypothalamus and in the prefrontal cortex (PFC), on histamine neurotransmission in the rat brain. The firing activity of histamine neurons in the TMN was measured using in vivo extracellular single-unit electrophysiology, under propofol anesthesia. Extracellular histamine levels were determined using the dual (PFC and TMN) probe microdialysis, in freely-moving animals. Histamine levels in dialysates were determined using high-performance liquid chromatography (HPLC) and fluorescence detection. It was found that systemic administration of the selective H(3)-agonist, immepip, decreases, and the reverse H(3) /H(4)-agonist, thioperamide, increases the firing activity of histamine neurons in the TMN and the release of histamine in TMN and PFC. Local perfusion of immepip into the TMN increased, and thioperamide decreased, histamine levels in the TMN but not in the PFC. Local perfusion of immepip into the PFC, however, decreased extracellular histamine levels in both TMN and PFC. It can be concluded that brain H(3) receptors, and especially those expressed in the PFC, play an important role in the autoregulation of histamine neurotransmission. It is possible that H(3) receptors in the PFC are expressed on pyramidal neurons projecting to the TMN, and activation of these receptors diminishes glutamate excitatory input from PFC to the TMN. As the brain histamine system has a role in pathophysiology of psychotic, affective, cognitive, sleep and eating disorders, H(3) receptors are potential targets for future CNS medications.


Subject(s)
Cerebral Cortex/metabolism , Electrophysiology/methods , Histamine/metabolism , Hypothalamus/metabolism , Microdialysis/methods , Receptors, Histamine H3/metabolism , Synaptic Transmission/physiology , Animals , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Histamine H3 Antagonists/pharmacology , Hypothalamus/cytology , Hypothalamus/drug effects , Imidazoles/pharmacology , Male , Piperidines/pharmacology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...