Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 8652, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622265

ABSTRACT

This research explores different methodologies to modulate the effects of drowsiness on functional connectivity (FC) during resting-state functional magnetic resonance imaging (RS-fMRI). The study utilized a cohort of students (MRi-Share) and classified individuals into drowsy, alert, and mixed/undetermined states based on observed respiratory oscillations. We analyzed the FC group difference between drowsy and alert individuals after five different processing methods: the reference method, two based on physiological and a global signal regression of the BOLD time series signal, and two based on Gaussian standardizations of the FC distribution. According to the reference method, drowsy individuals exhibit higher cortico-cortical FC than alert individuals. First, we demonstrated that each method reduced the differences between drowsy and alert states. The second result is that the global signal regression was quantitively the most effective, minimizing significant FC differences to only 3.3% of the total FCs. However, one should consider the risks of overcorrection often associated with this methodology. Therefore, choosing a less aggressive form of regression, such as the physiological method or Gaussian-based approaches, might be a more cautious approach. Third and last, using the Gaussian-based methods, cortico-subcortical and intra-default mode network (DMN) FCs were significantly greater in alert than drowsy subjects. These findings bear resemblance to the anticipated patterns during the onset of sleep, where the cortex isolates itself to assist in transitioning into deeper slow wave sleep phases, simultaneously disconnecting the DMN.


Subject(s)
Brain Mapping , Sleep, Slow-Wave , Humans , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Wakefulness , Sleep , Brain/diagnostic imaging , Brain/physiology
2.
Brain Struct Funct ; 228(1): 103-120, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35995880

ABSTRACT

The angular gyrus (AG) has been described in numerous studies to be consistently activated in various functional tasks. The angular gyrus is a critical connector epicenter linking multiple functional networks due to its location in the posterior part of the inferior parietal cortex, namely at the junction between the parietal, temporal, and occipital lobes. It is thus crucial to identify the different pathways that anatomically connect this high-order association region to the rest of the brain. Our study revisits the three-dimensional architecture of the structural AG connectivity by combining state-of-the-art postmortem blunt microdissection with advanced in vivo diffusion tractography to comprehensively describe the association, projection, and commissural fibers that connect the human angular gyrus. AG appears as a posterior "angular stone" of associative connections belonging to mid- and long-range dorsal and ventral fibers of the superior and inferior longitudinal systems, respectively, to short-range parietal, occipital, and temporal fibers, including U-shaped fibers in the posterior transverse system. Thus, AG is at a pivotal dorso-ventral position reflecting its critical role in the different functional networks, particularly in language elaboration and spatial attention and awareness in the left and right hemispheres, respectively. We also reveal striatal, thalamic, and brainstem connections and a typical inter-hemispheric homotopic callosal connectivity supporting the suggested AG role in the integration of sensory input for modulating motor control and planning. The present description of AG's highly distributed wiring diagram may drastically improve intraoperative subcortical testing and post-operative neurologic outcomes related to surgery in and around the angular gyrus.


Subject(s)
Diffusion Tensor Imaging , Microdissection , Humans , Diffusion Tensor Imaging/methods , Neural Pathways , Image Processing, Computer-Assisted , Parietal Lobe
3.
PLoS One ; 17(8): e0271732, 2022.
Article in English | MEDLINE | ID: mdl-35921273

ABSTRACT

It has been suggested that engraved abstract patterns dating from the Middle and Lower Palaeolithic served as means of representation and communication. Identifying the brain regions involved in visual processing of these engravings can provide insights into their function. In this study, brain activity was measured during perception of the earliest known Palaeolithic engraved patterns and compared to natural patterns mimicking human-made engravings. Participants were asked to categorise marks as being intentionally made by humans or due to natural processes (e.g. erosion, root etching). To simulate the putative familiarity of our ancestors with the marks, the responses of expert archaeologists and control participants were compared, allowing characterisation of the effect of previous knowledge on both behaviour and brain activity in perception of the marks. Besides a set of regions common to both groups and involved in visual analysis and decision-making, the experts exhibited greater activity in the inferior part of the lateral occipital cortex, ventral occipitotemporal cortex, and medial thalamic regions. These results are consistent with those reported in visual expertise studies, and confirm the importance of the integrative visual areas in the perception of the earliest abstract engravings. The attribution of a natural rather than human origin to the marks elicited greater activity in the salience network in both groups, reflecting the uncertainty and ambiguity in the perception of, and decision-making for, natural patterns. The activation of the salience network might also be related to the process at work in the attribution of an intention to the marks. The primary visual area was not specifically involved in the visual processing of engravings, which argued against its central role in the emergence of engraving production.


Subject(s)
Engraving and Engravings , Occipital Lobe , Archaeology , Brain Mapping , Humans , Magnetic Resonance Imaging/methods , Occipital Lobe/physiology , Recognition, Psychology
4.
Hum Brain Mapp ; 42(16): 5264-5277, 2021 11.
Article in English | MEDLINE | ID: mdl-34453474

ABSTRACT

The relationship between hippocampal subfield volumetry and verbal list-learning test outcomes have mostly been studied in clinical and elderly populations, and remain controversial. For the first time, we characterized a relationship between verbal list-learning test outcomes and hippocampal subfield volumetry on two large separate datasets of 447 and 1,442 healthy young and middle-aged adults, and explored the processes that could explain this relationship. We observed a replicable positive linear correlation between verbal list-learning test free recall scores and CA1 volume, specific to verbal list learning as demonstrated by the hippocampal subfield volumetry independence from verbal intelligence. Learning meaningless items was also positively correlated with CA1 volume, pointing to the role of the test design rather than word meaning. Accordingly, we found that association-based mnemonics mediated the relationship between verbal list-learning test outcomes and CA1 volume. This mediation suggests that integrating items into associative representations during verbal list-learning tests explains CA1 volume variations: this new explanation is consistent with the associative functions of the human CA1.


Subject(s)
Hippocampus/anatomy & histology , Verbal Learning/physiology , Adolescent , Adult , CA1 Region, Hippocampal/anatomy & histology , CA1 Region, Hippocampal/diagnostic imaging , Female , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
5.
Front Psychol ; 11: 2043, 2020.
Article in English | MEDLINE | ID: mdl-32922343

ABSTRACT

Supraspan verbal list-learning tests, such as the Rey Auditory Verbal Learning Test (RAVLT), are classic neuropsychological tests for assessing verbal memory. In this study, we investigated the impact of the meaning of the words to be learned on three memory stages [short-term recall (STR), learning, and delayed recall (DR)] in a cohort of 447 healthy adults. First, we compared scores obtained from the RAVLT (word condition) to those of an alternative version of this test using phonologically similar but meaningless items (pseudoword condition) and observed how each score varied as a function of age and sex. Then, we collected the participants' self-reported strategies to retain the word and pseudoword lists and examined if these strategies mediated the age and sex effects on memory scores. The word condition resulted in higher memory scores than pseudoword condition at each memory stage and even canceled out, for the learning stage, the detrimental effect of age that was observed for the short-term and DR. When taking sex into account, the word advantage was observed only in women for STR. The self-reported strategies, which were similar for words and pseudowords, were based on the position of the item on the list (word: 53%, pseudoword: 37%) or the meaning of the item (word: 64%, pseudoword: 58%) and were used alone or in combination. The best memory performance was associated with the meaning strategy in the word condition and with the combination of the meaning and position strategies in the pseudoword condition. Finally, we found that the word advantage observed in women for STR was mediated by the use of the meaning strategy. The RAVLT scores were thus highly dependent on word meaning, notably because it allowed efficient semantic knowledge-based strategies. Within the framework of Tulving's declarative memory model, these results are at odds with the depiction of the RAVLT as a verbal episodic memory test as it is increasingly referred to in the literature.

6.
Ann N Y Acad Sci ; 856: 132-138, 1998 Sep 29.
Article in English | MEDLINE | ID: mdl-9917873

ABSTRACT

Peripheral and central injections of lipopolysaccharide (LPS), a cytokine inducer, and recombinant proinflammatory cytokines such as interleukin-1 beta (IL-1 beta) induce sickness behavior in the form of reduced food intake and decreased social activities. Mechanisms of the behavioral effects of cytokines have been the subject of much investigation during the last 3 years. At the behavioral level, the profound depressing effects of cytokines on behavior are the expression of a highly organized motivational state. At the molecular level, sickness behavior is mediated by an inducible brain cytokine compartment that is activated by peripheral cytokines via neural afferent pathways. Centrally produced cytokines act on brain cytokine receptors that are similar to those characterized on peripheral immune and nonimmune cells, as demonstrated by pharmacologic experiments using cytokine receptor antagonists, neutralizing antibodies to specific subtypes of cytokine receptors, and gene targeting techniques. Evidence exists that different components of sickness behavior are mediated by different cytokines and that the relative importance of these cytokines is not the same in the peripheral and central cytokine compartments.


Subject(s)
Brain/physiopathology , Cytokines/physiology , Disease , Animals , Behavior, Animal/drug effects , Brain/physiology , Cytokines/pharmacology , Disease/psychology , Feeding Behavior , Humans , Inflammation/physiopathology , Lipopolysaccharides/toxicity , Recombinant Proteins/pharmacology , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...