Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Life Sci Alliance ; 2(3)2019 06.
Article in English | MEDLINE | ID: mdl-31142637

ABSTRACT

Salmonella enterica (e.g., serovars Typhi and Typhimurium) relies on translocation of effectors via type III secretion systems (T3SS). Specialization of typhoidal serovars is thought to be mediated via pseudogenesis. Here, we show that the Salmonella Typhi STY1076/t1865 protein, named StoD, a homologue of the enteropathogenic Escherichia coli/enterohemorrhagic E. coli/Citrobacter rodentium NleG, is a T3SS effector. The StoD C terminus (StoD-C) is a U-box E3 ubiquitin ligase, capable of autoubiquitination in the presence of multiple E2s. The crystal structure of the StoD N terminus (StoD-N) at 2.5 Å resolution revealed a ubiquitin-like fold. In HeLa cells expressing StoD, ubiquitin is redistributed into puncta that colocalize with StoD. Binding assays showed that StoD-N and StoD-C bind the same exposed surface of the ß-sheet of ubiquitin, suggesting that StoD could simultaneously interact with two ubiquitin molecules. Consistently, StoD interacted with both K63- (KD = 5.6 ± 1 µM) and K48-linked diubiquitin (KD = 15 ± 4 µM). Accordingly, we report the first S. Typhi-specific T3SS effector. We suggest that StoD recognizes and ubiquitinates pre-ubiquitinated targets, thus subverting intracellular signaling by functioning as an E4 enzyme.


Subject(s)
Bacterial Proteins/metabolism , Salmonella typhi/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Gene Order , Genetic Loci , Genome, Bacterial , Models, Molecular , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Salmonella typhi/genetics , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Ubiquitins/chemistry , Ubiquitins/genetics
2.
Nat Commun ; 9(1): 5148, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30498235

ABSTRACT

The original version of this Article contained an error in the spelling of the author David Ruano-Gallego, which was incorrectly given as David R. Gallego. This has now been corrected in both the PDF and HTML versions of the Article.

3.
Nat Commun ; 9(1): 4187, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30305622

ABSTRACT

Niche-adaptation of a bacterial pathogen hinges on the ability to recognize the complexity of signals from the environment and integrate that information with the regulation of genes critical for infection. Here we report the transcriptome of the attaching and effacing pathogen Citrobacter rodentium during infection of its natural murine host. Pathogen gene expression in vivo was heavily biased towards the virulence factor repertoire and was found to be co-ordinated uniquely in response to the host. Concordantly, we identified the host-specific induction of a metabolic pathway that overlapped with the regulation of virulence. The essential type 3 secretion system and an associated suite of distinct effectors were found to be modulated co-ordinately through a unique mechanism involving metabolism of microbiota-derived 1,2-propanediol, which dictated the ability to colonize the host effectively. This study provides novel insights into how host-specific metabolic adaptation acts as a cue to fine-tune virulence.


Subject(s)
Bacterial Secretion Systems , Citrobacter rodentium/metabolism , Enterobacteriaceae Infections/microbiology , Host-Pathogen Interactions , Animals , Bacterial Adhesion , Citrobacter rodentium/genetics , Citrobacter rodentium/pathogenicity , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/pathology , Gene Expression Regulation, Bacterial , HeLa Cells , Host-Pathogen Interactions/genetics , Humans , Metabolomics , Mice, Inbred BALB C , Mice, Inbred C57BL , Propylene Glycol/metabolism , Sequence Analysis, RNA , Transcriptome/genetics , Virulence/genetics , Virulence Factors/metabolism
4.
PLoS Pathog ; 14(10): e1007406, 2018 10.
Article in English | MEDLINE | ID: mdl-30365535

ABSTRACT

Infection with Citrobacter rodentium triggers robust tissue damage repair responses, manifested by secretion of IL-22, in the absence of which mice succumbed to the infection. Of the main hallmarks of C. rodentium infection are colonic crypt hyperplasia (CCH) and dysbiosis. In order to colonize the host and compete with the gut microbiota, C. rodentium employs a type III secretion system (T3SS) that injects effectors into colonic intestinal epithelial cells (IECs). Once injected, the effectors subvert processes involved in innate immune responses, cellular metabolism and oxygenation of the mucosa. Importantly, the identity of the effector/s triggering the tissue repair response is/are unknown. Here we report that the effector EspO ,an orthologue of OspE found in Shigella spp, affects proliferation of IECs 8 and 14 days post C. rodentium infection as well as secretion of IL-22 from colonic explants. While we observed no differences in the recruitment of group 3 innate lymphoid cells (ILC3s) and T cells, which are the main sources of IL-22 at the early and late stages of C. rodentium infection respectively, infection with ΔespO was characterized by diminished recruitment of sub-mucosal neutrophils, which coincided with lower abundance of Mmp9 and chemokines (e.g. S100a8/9) in IECs. Moreover, mice infected with ΔespO triggered significantly lesser nutritional immunity (e.g. calprotectin, Lcn2) and expression of antimicrobial peptides (Reg3ß, Reg3γ) compared to mice infected with WT C. rodentium. This overlapped with a decrease in STAT3 phosphorylation in IECs. Importantly, while the reduced CCH and abundance of antimicrobial proteins during ΔespO infection did not affect C. rodentium colonization or the composition of commensal Proteobacteria, they had a subtle consequence on Firmicutes subpopulations. EspO is the first bacterial virulence factor that affects neutrophil recruitment and secretion of IL-22, as well as expression of antimicrobial and nutritional immunity proteins in IECs.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Citrobacter rodentium/metabolism , Enterobacteriaceae Infections/immunology , Immunity, Innate/immunology , Intestinal Mucosa/immunology , Type III Secretion Systems/metabolism , Animals , Enterobacteriaceae Infections/metabolism , Enterobacteriaceae Infections/microbiology , Female , Intestinal Mucosa/injuries , Intestinal Mucosa/microbiology , Mice , Mice, Inbred C57BL
5.
Cell Rep ; 21(12): 3381-3389, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29262319

ABSTRACT

We investigated the role of commensals at the peak of infection with the colonic mouse pathogen Citrobacter rodentium. Bioluminescent and kanamycin (Kan)-resistant C. rodentium persisted avirulently in the cecal lumen of mice continuously treated with Kan. A single Kan treatment was sufficient to displace C. rodentium from the colonic mucosa, a phenomenon not observed following treatment with vancomycin (Van) or metronidazole (Met). Kan, Van, and Met induce distinct dysbiosis, suggesting C. rodentium relies on specific commensals for colonic colonization. Expression of the master virulence regulator ler is induced in germ-free mice, yet C. rodentium is only seen in the cecal lumen. Moreover, in conventional mice, a single Kan treatment was sufficient to displace C. rodentium constitutively expressing Ler from the colonic mucosa. These results show that expression of virulence genes is not sufficient for colonization of the colonic mucosa and that commensals are essential for a physiological infection course.


Subject(s)
Anti-Bacterial Agents/pharmacology , Citrobacter rodentium/pathogenicity , Colon/microbiology , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/microbiology , Animals , Bacterial Proteins/genetics , Citrobacter rodentium/drug effects , Kanamycin/pharmacology , Metronidazole/pharmacology , Mice , Vancomycin/pharmacology , Virulence/genetics
6.
EMBO J ; 36(23): 3517-3531, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29109154

ABSTRACT

Type III secretion (T3S), a protein export pathway common to Gram-negative pathogens, comprises a trans-envelope syringe, the injectisome, with a cytoplasm-facing translocase channel. Exported substrates are chaperone-delivered to the translocase, EscV in enteropathogenic Escherichia coli, and cross it in strict hierarchical manner, for example, first "translocators", then "effectors". We dissected T3S substrate targeting and hierarchical switching by reconstituting them in vitro using inverted inner membrane vesicles. EscV recruits and conformationally activates the tightly membrane-associated pseudo-effector SepL and its chaperone SepD. This renders SepL a high-affinity receptor for translocator/chaperone pairs, recognizing specific chaperone signals. In a second, SepD-coupled step, translocators docked on SepL become secreted. During translocator secretion, SepL/SepD suppress effector/chaperone binding to EscV and prevent premature effector secretion. Disengagement of the SepL/SepD switch directs EscV to dedicated effector export. These findings advance molecular understanding of T3S and reveal a novel mechanism for hierarchical trafficking regulation in protein secretion channels.


Subject(s)
Enteropathogenic Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Type III Secretion Systems/metabolism , Cell Membrane/metabolism , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Models, Biological , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Protein Transport , Type III Secretion Systems/chemistry , Type III Secretion Systems/genetics
7.
Cell Metab ; 26(5): 738-752.e6, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-28988824

ABSTRACT

The intestinal epithelial cells (IECs) that line the gut form a robust line of defense against ingested pathogens. We investigated the impact of infection with the enteric pathogen Citrobacter rodentium on mouse IEC metabolism using global proteomic and targeted metabolomics and lipidomics. The major signatures of the infection were upregulation of the sugar transporter Sglt4, aerobic glycolysis, and production of phosphocreatine, which mobilizes cytosolic energy. In contrast, biogenesis of mitochondrial cardiolipins, essential for ATP production, was inhibited, which coincided with increased levels of mucosal O2 and a reduction in colon-associated anaerobic commensals. In addition, IECs responded to infection by activating Srebp2 and the cholesterol biosynthetic pathway. Unexpectedly, infected IECs also upregulated the cholesterol efflux proteins AbcA1, AbcG8, and ApoA1, resulting in higher levels of fecal cholesterol and a bloom of Proteobacteria. These results suggest that C. rodentium manipulates host metabolism to evade innate immune responses and establish a favorable gut ecosystem.


Subject(s)
Adenosine Triphosphate/metabolism , Cholesterol/metabolism , Citrobacter rodentium/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Adenosine Triphosphate/analysis , Animals , Cell Line , Cholesterol/analysis , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Feces/microbiology , Female , Humans , Immunity, Innate/physiology , Male , Metabolomics , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mitochondria/metabolism , Proteomics
8.
Infect Immun ; 85(9)2017 09.
Article in English | MEDLINE | ID: mdl-28630074

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) is a diarrheagenic pathogen that colonizes the gut mucosa and induces attaching-and-effacing lesions. EHEC employs a type III secretion system (T3SS) to translocate 50 effector proteins that hijack and manipulate host cell signaling pathways, which allow bacterial colonization and subversion of immune responses and disease progression. The aim of this study was to characterize the T3SS effector EspW. We found espW in the sequenced O157:H7 and non-O157 EHEC strains as well as in Shigella boydii Furthermore, a truncated version of EspW, containing the first 206 residues, is present in EPEC strains belonging to serotype O55:H7. Screening a collection of clinical EPEC isolates revealed that espW is present in 52% of the tested strains. We report that EspW modulates actin dynamics in a Rac1-dependent manner. Ectopic expression of EspW results in formation of unique membrane protrusions. Infection of Swiss cells with an EHEC espW deletion mutant induces a cell shrinkage phenotype that could be rescued by Rac1 activation via expression of the bacterial guanine nucleotide exchange factor, EspT. Furthermore, using a yeast two-hybrid screen, we identified the motor protein Kif15 as a potential interacting partner of EspW. Kif15 and EspW colocalized in cotransfected cells, while ectopically expressed Kif15 localized to the actin pedestals following EHEC infection. The data suggest that Kif15 recruits EspW to the site of bacterial attachment, which in turn activates Rac1, resulting in modifications of the actin cytoskeleton that are essential to maintain cell shape during infection.


Subject(s)
Actins/metabolism , Enterohemorrhagic Escherichia coli/pathogenicity , Escherichia coli Proteins/metabolism , Host-Pathogen Interactions , rac1 GTP-Binding Protein/metabolism , Animals , Cell Line , Humans , Kinesins/metabolism , Mice , Protein Interaction Mapping , Two-Hybrid System Techniques
10.
Nat Microbiol ; 2: 16258, 2017 01 13.
Article in English | MEDLINE | ID: mdl-28085133

ABSTRACT

Cell death signalling pathways contribute to tissue homeostasis and provide innate protection from infection. Adaptor proteins such as receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3), TIR-domain-containing adapter-inducing interferon-ß (TRIF) and Z-DNA-binding protein 1 (ZBP1)/DNA-dependent activator of IFN-regulatory factors (DAI) that contain receptor-interacting protein (RIP) homotypic interaction motifs (RHIM) play a key role in cell death and inflammatory signalling1-3. RHIM-dependent interactions help drive a caspase-independent form of cell death termed necroptosis4,5. Here, we report that the bacterial pathogen enteropathogenic Escherichia coli (EPEC) uses the type III secretion system (T3SS) effector EspL to degrade the RHIM-containing proteins RIPK1, RIPK3, TRIF and ZBP1/DAI during infection. This requires a previously unrecognized tripartite cysteine protease motif in EspL (Cys47, His131, Asp153) that cleaves within the RHIM of these proteins. Bacterial infection and/or ectopic expression of EspL leads to rapid inactivation of RIPK1, RIPK3, TRIF and ZBP1/DAI and inhibition of tumour necrosis factor (TNF), lipopolysaccharide or polyinosinic:polycytidylic acid (poly(I:C))-induced necroptosis and inflammatory signalling. Furthermore, EPEC infection inhibits TNF-induced phosphorylation and plasma membrane localization of mixed lineage kinase domain-like pseudokinase (MLKL). In vivo, EspL cysteine protease activity contributes to persistent colonization of mice by the EPEC-like mouse pathogen Citrobacter rodentium. The activity of EspL defines a family of T3SS cysteine protease effectors found in a range of bacteria and reveals a mechanism by which gastrointestinal pathogens directly target RHIM-dependent inflammatory and necroptotic signalling pathways.


Subject(s)
Apoptosis , Escherichia coli Proteins/metabolism , Inflammation , Necrosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Cell Death , Citrobacter rodentium/pathogenicity , Cysteine Proteases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Enteropathogenic Escherichia coli/enzymology , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Proteins/genetics , HEK293 Cells , Humans , Lipopolysaccharides/pharmacology , Mice , Phosphorylation , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Type III Secretion Systems
11.
J Bacteriol ; 199(4)2017 02 15.
Article in English | MEDLINE | ID: mdl-27920299

ABSTRACT

Strains of the various Salmonella enterica serovars cause gastroenteritis or typhoid fever in humans, with virulence depending on the action of two type III secretion systems (Salmonella pathogenicity island 1 [SPI-1] and SPI-2). SptP is a Salmonella SPI-1 effector, involved in mediating recovery of the host cytoskeleton postinfection. SptP requires a chaperone, SicP, for stability and secretion. SptP has 94% identity between S. enterica serovar Typhimurium and S Typhi; direct comparison of the protein sequences revealed that S Typhi SptP has numerous amino acid changes within its chaperone-binding domain. Subsequent comparison of ΔsptP S Typhi and S. Typhimurium strains demonstrated that, unlike SptP in S. Typhimurium, SptP in S Typhi was not involved in invasion or cytoskeletal recovery postinfection. Investigation of whether the observed amino acid changes within SptP of S Typhi affected its function revealed that S Typhi SptP was unable to complement S. Typhimurium ΔsptP due to an absence of secretion. We further demonstrated that while S. Typhimurium SptP is stable intracellularly within S Typhi, S Typhi SptP is unstable, although stability could be recovered following replacement of the chaperone-binding domain with that of S. Typhimurium. Direct assessment of the strength of the interaction between SptP and SicP of both serovars via bacterial two-hybrid analysis demonstrated that S Typhi SptP has a significantly weaker interaction with SicP than the equivalent proteins in S. Typhimurium. Taken together, our results suggest that changes within the chaperone-binding domain of SptP in S Typhi hinder binding to its chaperone, resulting in instability, preventing translocation, and therefore restricting the intracellular activity of this effector. IMPORTANCE: Studies investigating Salmonella pathogenesis typically rely on Salmonella Typhimurium, even though Salmonella Typhi causes the more severe disease in humans. As such, an understanding of S. Typhi pathogenesis is lacking. Differences within the type III secretion system effector SptP between typhoidal and nontyphoidal serovars led us to characterize this effector within S Typhi. Our results suggest that SptP is not translocated from typhoidal serovars, even though the loss of sptP results in virulence defects in S. Typhimurium. Although SptP is just one effector, our results exemplify that the behavior of these serovars is significantly different and genes identified to be important for S. Typhimurium virulence may not translate to S Typhi.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation/physiology , Protein Tyrosine Phosphatases/metabolism , Salmonella typhi/metabolism , Type III Secretion Systems/physiology , Amino Acid Sequence , Bacterial Proteins/genetics , Gene Expression Regulation, Enzymologic , HeLa Cells , Humans , Mutation , Protein Tyrosine Phosphatases/genetics , Salmonella typhi/genetics
12.
Infect Immun ; 85(1)2017 Jan.
Article in English | MEDLINE | ID: mdl-27821583

ABSTRACT

Tracking disease progression in vivo is essential for the development of treatments against bacterial infection. Optical imaging has become a central tool for in vivo tracking of bacterial population development and therapeutic response. For a precise understanding of in vivo imaging results in terms of disease mechanisms derived from detailed postmortem observations, however, a link between the two is needed. Here, we develop a model that provides that link for the investigation of Citrobacter rodentium infection, a mouse model for enteropathogenic Escherichia coli (EPEC). We connect in vivo disease progression of C57BL/6 mice infected with bioluminescent bacteria, imaged using optical tomography and X-ray computed tomography, to postmortem measurements of colonic immune cell infiltration. We use the model to explore changes to both the host immune response and the bacteria and to evaluate the response to antibiotic treatment. The developed model serves as a novel tool for the identification and development of new therapeutic interventions.


Subject(s)
Citrobacter rodentium/immunology , Citrobacter rodentium/physiology , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Enteropathogenic Escherichia coli/immunology , Enteropathogenic Escherichia coli/physiology , Host-Pathogen Interactions/immunology , Animals , Anti-Bacterial Agents/pharmacology , Citrobacter rodentium/drug effects , Colon/immunology , Colon/microbiology , Disease Models, Animal , Enterobacteriaceae Infections/drug therapy , Enteropathogenic Escherichia coli/drug effects , Escherichia coli Proteins/immunology , Escherichia coli Proteins/metabolism , Female , Mice , Mice, Inbred C57BL , Optical Imaging/methods , Tomography, X-Ray Computed/methods
13.
Nat Protoc ; 11(10): 1851-76, 2016 10.
Article in English | MEDLINE | ID: mdl-27606775

ABSTRACT

Infection of mice with Citrobacter rodentium is a robust model to study bacterial pathogenesis, mucosal immunology, the health benefits of probiotics and the role of the microbiota during infection. C. rodentium was first isolated by Barthold from an outbreak of mouse diarrhea in Yale University in 1972 and was 'rediscovered' by Falkow and Schauer in 1993. Since then the use of the model has proliferated, and it is now the gold standard for studying virulence of the closely related human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively). Here we provide a detailed protocol for various applications of the model, including bacterial growth, site-directed mutagenesis, mouse inoculation (from cultured cells and after cohabitation), monitoring of bacterial colonization, tissue extraction and analysis, immune responses, probiotic treatment and microbiota analysis. The main protocol, from mouse infection to clearance and analysis of tissues and host responses, takes ∼5 weeks to complete.


Subject(s)
Citrobacter rodentium/physiology , Colon/pathology , Enterobacteriaceae Infections/pathology , Animals , Citrobacter rodentium/growth & development , Citrobacter rodentium/immunology , Colon/immunology , Colon/microbiology , Disease Models, Animal , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Female , Gastrointestinal Microbiome , Host-Pathogen Interactions , Humans , Immunity, Innate , Mice , Mice, Inbred C57BL
14.
Infect Immun ; 83(9): 3342-54, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26077760

ABSTRACT

The hallmarks of enteropathogenic Escherichia coli (EPEC) infection are formation of attaching and effacing (A/E) lesions on mucosal surfaces and actin-rich pedestals on cultured cells, both of which are dependent on the type III secretion system effector Tir. Following translocation into cultured cells and clustering by intimin, Tir Y474 is phosphorylated, leading to recruitment of Nck, activation of N-WASP, and actin polymerization via the Arp2/3 complex. A secondary, weak, actin polymerization pathway is triggered via an NPY motif (Y454). Importantly, Y454 and Y474 play no role in A/E lesion formation on mucosal surfaces following infection with the EPEC-like mouse pathogen Citrobacter rodentium. In this study, we investigated the roles of Tir segments located upstream of Y451 and downstream of Y471 in C. rodentium colonization and A/E lesion formation. We also tested the role that Tir residues Y451 and Y471 play in host immune responses to C. rodentium infection. We found that deletion of amino acids 382 to 462 or 478 to 547 had no impact on the ability of Tir to mediate A/E lesion formation, although deletion of amino acids 478 to 547 affected Tir translocation. Examination of enterocytes isolated from infected mice revealed that a C. rodentium strain expressing Tir_Y451A/Y471A recruited significantly fewer neutrophils to the colon and triggered less colonic hyperplasia on day 14 postinfection than the wild-type strain. Consistently, enterocytes isolated from mice infected with C. rodentium expressing Tir_Y451A/Y471A expressed significantly less CXCL1. These result show that Tir-induced actin remodeling plays a direct role in modulation of immune responses to C. rodentium infection.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems/physiology , Chemokine CXCL1/biosynthesis , Citrobacter rodentium , Enterobacteriaceae Infections/immunology , Enterocytes/metabolism , Neutrophil Infiltration/physiology , Actins/metabolism , Animals , Bacterial Proteins/genetics , Enterobacteriaceae Infections/metabolism , Female , Flow Cytometry , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Reverse Transcriptase Polymerase Chain Reaction , Swiss 3T3 Cells
15.
Nat Rev Microbiol ; 12(9): 612-23, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25088150

ABSTRACT

Citrobacter rodentium is a mucosal pathogen of mice that shares several pathogenic mechanisms with enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC), which are two clinically important human gastrointestinal pathogens. Thus, C. rodentium has long been used as a model to understand the molecular basis of EPEC and EHEC infection in vivo. In this Review, we discuss recent studies in which C. rodentium has been used to study mucosal immunology, including the deregulation of intestinal inflammatory responses during bacteria-induced colitis and the role of the intestinal microbiota in mediating resistance to colonization by enteric pathogens. These insights should help to elucidate the roles of mucosal inflammatory responses and the microbiota in the virulence of enteric pathogens.


Subject(s)
Citrobacter rodentium/pathogenicity , Colitis/immunology , Enterobacteriaceae Infections/immunology , Host-Pathogen Interactions , Microbiota , Animals , Citrobacter rodentium/immunology , Citrobacter rodentium/physiology , Colitis/microbiology , Colon/microbiology , Diet , Enterobacteriaceae Infections/microbiology , Enterohemorrhagic Escherichia coli/pathogenicity , Enteropathogenic Escherichia coli/pathogenicity , Epithelium/microbiology , Immunity, Mucosal , Intestine, Large/microbiology , Mice , Signal Transduction , Virulence
16.
J Infect Dis ; 210(7): 1029-41, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24706936

ABSTRACT

We evaluated the protective effects of fermented dairy products (FDPs) in an infection model, using the mouse pathogen Citrobacter rodentium (CR). Treatment of mice with FDP formulas A, B, and C or a control product did not affect CR colonization, organ specificity, or attaching and effacing lesion formation. Fermented dairy product A (FDP-A), but neither the supernatant from FDP-A nor ß-irradiated (IR) FDP-A, caused a significant reduction in colonic crypt hyperplasia and CR-associated pathology. Profiling the gut microbiota revealed that IR-FDP-A promoted higher levels of phylotypes belonging to Alcaligenaceae and a decrease in Lachnospiraceae (Ruminococcus) during CR infection. Conversely, FDP-A prevented a decrease in Ruminococcus and increased Turicibacteraceae (Turicibacter). Importantly, loss of Ruminococcus and Turicibacter has been associated with susceptibility to dextran sodium sulfate-induced colitis. Our results demonstrate that viable bacteria in FDP-A reduced CR-induced colonic crypt hyperplasia and prevented the loss of key bacterial genera that may contribute to disease pathology.


Subject(s)
Biota , Citrobacter rodentium/growth & development , Colon/pathology , Dairy Products , Diet/methods , Enterobacteriaceae Infections/prevention & control , Hyperplasia/prevention & control , Animals , Colon/microbiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/pathology , Female , Hyperplasia/pathology , Mice, Inbred C57BL
17.
Nature ; 501(7466): 247-51, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-24025841

ABSTRACT

Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonize the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic (EPEC and EHEC, respectively) Escherichia coli use a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonization and interfere with antimicrobial host responses. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death-domain-containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death-inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death-receptor-induced apoptosis. This inhibition depended on the N-acetylglucosamine transferase activity of NleB1, which specifically modified Arg 117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing pathogens antagonize death-receptor-induced apoptosis of infected cells, thereby blocking a major antimicrobial host response.


Subject(s)
Enteropathogenic Escherichia coli/metabolism , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Gastrointestinal Tract/microbiology , Signal Transduction , Virulence Factors/metabolism , Animals , Caspase 8/metabolism , Cell Death , Citrobacter rodentium/pathogenicity , Citrobacter rodentium/physiology , Enteropathogenic Escherichia coli/pathogenicity , Enzyme Activation , Escherichia coli Infections/pathology , Fas Ligand Protein/antagonists & inhibitors , Fas Ligand Protein/metabolism , Fas-Associated Death Domain Protein/chemistry , Fas-Associated Death Domain Protein/metabolism , Female , HEK293 Cells , HeLa Cells , Humans , Male , Mice , N-Acetylglucosaminyltransferases/metabolism , Protein Structure, Tertiary , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , TNF Receptor-Associated Death Domain Protein/chemistry , TNF Receptor-Associated Death Domain Protein/metabolism , fas Receptor/deficiency , fas Receptor/metabolism
18.
mBio ; 3(5)2012.
Article in English | MEDLINE | ID: mdl-23033475

ABSTRACT

UNLABELLED: Translocation of effector proteins via a type III secretion system (T3SS) is a widespread infection strategy among Gram-negative bacterial pathogens. Each pathogen translocates a particular set of effectors that subvert cell signaling in a way that suits its particular infection cycle. However, as effector unbalance might lead to cytotoxicity, the pathogens must employ mechanisms that regulate the intracellular effector concentration. We present evidence that the effector EspZ controls T3SS effector translocation from enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli. Consistently, an EPEC espZ mutant is highly cytotoxic. Following ectopic expression, we found that EspZ inhibited the formation of actin pedestals as it blocked the translocation of Tir, as well as other effectors, including Map and EspF. Moreover, during infection EspZ inhibited effector translocation following superinfection. Importantly, while EspZ of EHEC O157:H7 had a universal "translocation stop" activity, EspZ of EPEC inhibited effector translocation from typical EPEC strains but not from EHEC O157:H7 or its progenitor, atypical EPEC O55:H7. We found that the N and C termini of EspZ, which contains two transmembrane domains, face the cytosolic leaflet of the plasma membrane at the site of bacterial attachment, while the extracellular loop of EspZ is responsible for its strain-specific activity. These results show that EPEC and EHEC acquired a sophisticated mechanism to regulate the effector translocation. IMPORTANCE: Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are important diarrheal pathogens responsible for significant morbidity and mortality in developing countries and the developed world, respectively. The virulence strategy of EPEC and EHEC revolves around a conserved type III secretion system (T3SS), which translocates bacterial proteins known as effectors directly into host cells. Previous studies have shown that when cells are infected in two waves with EPEC, the first wave inhibits effector translocation by the second wave in a T3SS-dependent manner, although the factor involved was not known. Importantly, we identified EspZ as the effector responsible for blocking protein translocation following a secondary EPEC infection. Interestingly, we found that while EspZ of EHEC can block protein translocation from both EPEC and EHEC strains, EPEC EspZ cannot block translocation from EHEC. These studies show that EPEC and EHEC employ a novel infection strategy to regulate T3SS translocation.


Subject(s)
Bacterial Secretion Systems , Enterohemorrhagic Escherichia coli/genetics , Enteropathogenic Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Protein Transport , Cell Survival , Enterohemorrhagic Escherichia coli/pathogenicity , Enteropathogenic Escherichia coli/pathogenicity , Epithelial Cells/microbiology , Epithelial Cells/physiology , HeLa Cells , Humans , Virulence Factors/metabolism
19.
Cell Microbiol ; 14(7): 1051-70, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22372637

ABSTRACT

Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC) are diarrheagenic pathogens that colonize the gut mucosa via attaching-and-effacing lesion formation. EPEC and EHEC utilize a type III secretion system (T3SS) to translocate effector proteins that subvert host cell signalling to sustain colonization and multiplication. EspH, a T3SS effector that modulates actin dynamics, was implicated in the elongation of the EHEC actin pedestals. In this study we found that EspH is necessary for both efficient pedestal formation and pedestal elongation during EPEC infection. We report that EspH induces actin polymerization at the bacterial attachment sites independently of the Tir tyrosine residues Y474 and Y454, which are implicated in binding Nck and IRSp53/ITRKS respectively. Moreover, EspH promotes recruitment of neural Wiskott-Aldrich syndrome protein (N-WASP) and the Arp2/3 complex to the bacterial attachment site, in a mechanism involving the C-terminus of Tir and the WH1 domain of N-WASP. Dominant negative of WASP-interacting protein (WIP), which binds the N-WASP WH1 domain, diminished EspH-mediated actin polymerization. This study implicates WIP in EPEC-mediated actin polymerization and pedestal elongation and represents the first instance whereby N-WASP is efficiently recruited to the EPEC attachment sites independently of the Tir:Nck and Tir:IRTKS/IRSp53 pathways. Our study reveals the intricacies of Tir and EspH-mediated actin signalling pathways that comprise of distinct, convergent and synergistic signalling cascades.


Subject(s)
Actins/metabolism , Cytoskeletal Proteins/metabolism , Endocytosis , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Bacterial Secretion Systems , Models, Biological , Protein Transport
20.
mBio ; 3(1)2012.
Article in English | MEDLINE | ID: mdl-22251971

ABSTRACT

UNLABELLED: Rho GTPases are important regulators of many cellular processes. Subversion of Rho GTPases is a common infection strategy employed by many important human pathogens. Enteropathogenic Escherichia coli and enterohemorrhagic Escherichia coli (EPEC and EHEC) translocate the effector EspH, which inactivates mammalian Rho guanine exchange factors (GEFs), as well as Map, EspT, and EspM2, which, by mimicking mammalian RhoGEFs, activate Rho GTPases. In this study we found that EspH induces focal adhesion disassembly, triggers cell detachment, activates caspase-3, and induces cytotoxicity. EspH-induced cell detachment and caspase-3 activation can be offset by EspT, EspM2, and the Salmonella Cdc42/Rac1 GEF effector SopE, which remain active in the presence of EspH. EPEC and EHEC therefore use a novel strategy of controlling Rho GTPase activity by translocating one effector to inactivate mammalian RhoGEFs, replacing them with bacterial RhoGEFs. This study also expands the functional range of bacterial RhoGEFs to include cell adhesion and survival. IMPORTANCE: Many human pathogens use a type III secretion system to translocate effectors that can functionally be divided into signaling, disabling, and countervirulence effectors. Among the signaling effectors are those that activate Rho GTPases, which play a central role in coordinating actin dynamics. However, many pathogens also translocate effectors with antagonistic or counteractive functions. For example, Salmonella translocates SopE and SptP, which sequentially turn Rac1 and Cdc42 on and off. In this paper, we show that enteropathogenic E. coli translocates EspH, which inactivates mammalian RhoGEFs and triggers cytotoxicity and at the same time translocates the bacterial RhoGEFs EspM2 and EspT, which are insensitive to EspH, and so neutralizes EspH-induced focal adhesion disassembly, cell detachment, and caspase-3 activation. Our data point to an intriguing infection strategy in which EPEC and EHEC override cellular Rho GTPase signaling by disabling mammalian RhoGEFs and replacing them with with bacterial RhoGEFs that promote cell adhesion and survival.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/pathogenicity , Host-Pathogen Interactions , rho GTP-Binding Proteins/antagonists & inhibitors , Caspase 3/metabolism , Cell Adhesion , Cell Death , HeLa Cells , Humans , Protein Interaction Mapping , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...