Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Bioorg Chem ; 148: 107472, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788364

ABSTRACT

Patents tend to define a huge chemical space described by the combinatorial nature of Markush structures. However, the optimization of new principal active ingredient is frequently driven by a simple Free Wilson approach. This procedure leads to a highly focused study on the chemical space near a hit compound leaving many unexplored regions that may present highly biological active reservoirs. This study aims to demonstrate that this unveiled chemical space can hide compounds with interesting potential biological activity that would be worth pursuing. This underlines the value and necessity of broadening an approach beyond conventional strategies. Hence, we advocate for an alternative methodology that may be more efficient in the early drug discovery stages. We have selected the case of Tafenoquine, a single-dose treatment for the radical cure of P. vivax malaria approved by the FDA in 2018, as an example to illustrate the process. Through the deep exploration of the Tafenoquine chemical space, seven compounds with potential antimalarial activity have been rationally identified and synthesized. This small set is representative of the chemical diversity unexplored by the 58 analogs reported to date. After biological assessment, results evidence that our approach for rational design has proven to be a very efficient exploratory methodology suitable for the early drug discovery stages.


Subject(s)
Aminoquinolines , Antimalarials , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , Aminoquinolines/chemistry , Aminoquinolines/pharmacology , Aminoquinolines/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Humans , Parasitic Sensitivity Tests , Plasmodium vivax/drug effects , Plasmodium falciparum/drug effects
2.
Nat Commun ; 14(1): 8302, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097652

ABSTRACT

The proteasome of the malaria parasite Plasmodium falciparum (Pf20S) is an advantageous drug target because its inhibition kills P. falciparum in multiple stages of its life cycle and synergizes with artemisinins. We recently developed a macrocyclic peptide, TDI-8304, that is highly selective for Pf20S over human proteasomes and is potent in vitro and in vivo against P. falciparum. A mutation in the Pf20S ß6 subunit, A117D, confers resistance to TDI-8304, yet enhances both enzyme inhibition and anti-parasite activity of a tripeptide vinyl sulfone ß2 inhibitor, WLW-vs. Here we present the high-resolution cryo-EM structures of Pf20S with TDI-8304, of human constitutive proteasome with TDI-8304, and of Pf20Sß6A117D with WLW-vs that give insights into the species selectivity of TDI-8304, resistance to it, and the collateral sensitivity associated with resistance, including that TDI-8304 binds ß2 and ß5 in wild type Pf20S as well as WLW-vs binds ß2 and ß5 in Pf20Sß6A117D. We further show that TDI-8304 kills P. falciparum as quickly as chloroquine and artemisinin and is active against P. cynomolgi at the liver stage. This increases interest in using these structures to facilitate the development of Pf20S inhibitors that target multiple proteasome subunits and limit the emergence of resistance.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Plasmodium falciparum/genetics , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry , Proteasome Endopeptidase Complex/metabolism , Drug Collateral Sensitivity , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Antimalarials/pharmacology , Antimalarials/chemistry , Drug Resistance/genetics , Protozoan Proteins/genetics
3.
ACS Chem Biol ; 16(11): 2348-2372, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34609851

ABSTRACT

The search for new antimalarial drugs with unexplored mechanisms of action is currently one of the main objectives to combat the resistance already in the clinic. New drugs should target specific mechanisms that once initiated lead inevitably to the parasite's death and clearance and cause minimal toxicity to the host. One such new mode of action recently characterized is to target the parasite's calcium dynamics. Disruption of the calcium homeostasis is associated with compromised digestive vacuole membrane integrity and release of its contents, leading to programmed cell death-like features characterized by loss of mitochondrial membrane potential and DNA degradation. Intriguingly, chloroquine (CQ)-treated parasites were previously reported to exhibit such cellular features. Using a high-throughput phenotypic screen, we identified 158 physiological disruptors (hits) of parasite calcium distribution from a small subset of approximately 3000 compounds selected from the GSK TCAMS (Tres Cantos Anti-Malarial Set) compound library. These compounds were then extensively profiled for biological activity against various CQ- and artemisinin-resistant Plasmodium falciparum strains and stages. The hits were also examined for cytotoxicity, speed of antimalarial activity, and their possible inhibitory effects on heme crystallization. Overall, we identified three compounds, TCMDC-136230, -125431, and -125457, which were potent in inducing calcium redistribution but minimally inhibited heme crystallization. Molecular superimposition of the molecules by computational methods identified a common pharmacophore, with the best fit assigned to TCMDC-125457. There were low cytotoxicity or CQ cross-resistance issues for these three compounds. IC50 values of these three compounds were in the low micromolar range. In addition, TCMDC-125457 demonstrated high efficacy when pulsed in a single-dose combination with artesunate against tightly synchronized artemisinin-resistant ring-stage parasites. These results should add new drug options to the current armament of antimalarial drugs as well as provide promising starting points for development of drugs with non-classical modes of action.


Subject(s)
Antimalarials/pharmacology , Calcium/metabolism , High-Throughput Screening Assays/methods , Homeostasis/drug effects , Plasmodium falciparum/drug effects , Antimalarials/chemistry , Benzofurans/chemistry , Cytosol/metabolism , DNA/metabolism , Imidazoles/chemistry , Mitochondria/metabolism , Plasmodium falciparum/metabolism , Structure-Activity Relationship
4.
J Med Chem ; 64(17): 12582-12602, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34437804

ABSTRACT

A phenotypic high-throughput screen allowed discovery of quinazolinone-2-carboxamide derivatives as a novel antimalarial scaffold. Structure-activity relationship studies led to identification of a potent inhibitor 19f, 95-fold more potent than the original hit compound, active against laboratory-resistant strains of malaria. Profiling of 19f suggested a fast in vitro killing profile. In vivo activity in a murine model of human malaria in a dose-dependent manner constitutes a concomitant benefit.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Malaria, Falciparum/drug therapy , Quinazolinones/pharmacology , Administration, Oral , Animals , Humans , Mice , Molecular Structure , Plasmodium falciparum/drug effects , Quinazolinones/chemistry , Structure-Activity Relationship
5.
ACS Infect Dis ; 7(6): 1818-1832, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34044540

ABSTRACT

The Ubiquitin Proteasome System is the main proteolytic pathway in eukaryotic cells, playing a role in key cellular processes. The essentiality of the Plasmodium falciparum proteasome is well validated, underlying its potential as an antimalarial target, but selective compounds are required to avoid cytotoxic effects in humans. Almost 550000 compounds were tested for the inhibition of the chymotrypsin-like activity of the P. falciparum proteasome using a Proteasome-GLO luminescence assay. Hits were confirmed in an orthogonal enzyme assay using Rho110-labeled peptides, and selectivity was assessed against the human proteasome. Four nonpeptidomimetic chemical families with some selectivity for the P. falciparum proteasome were identified and characterized in assays of proteasome trypsin and caspase activities and in parasite growth inhibition assays. Target engagement studies were performed, validating our approach. Hits identified are good starting points for the development of new antimalarial drugs and as tools to better understand proteasome function in P. falciparum.


Subject(s)
Antimalarials , Malaria, Falciparum , Antimalarials/pharmacology , High-Throughput Screening Assays , Humans , Malaria, Falciparum/drug therapy , Plasmodium falciparum , Proteasome Inhibitors/pharmacology
6.
ACS Infect Dis ; 7(6): 1680-1689, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33929818

ABSTRACT

Prolyl-tRNA synthetase (PRS) is a clinically validated antimalarial target. Screening of a set of PRS ATP-site binders, initially designed for human indications, led to identification of 1-(pyridin-4-yl)pyrrolidin-2-one derivatives representing a novel antimalarial scaffold. Evidence designates cytoplasmic PRS as the drug target. The frontrunner 1 and its active enantiomer 1-S exhibited low-double-digit nanomolar activity against resistant Plasmodium falciparum (Pf) laboratory strains and development of liver schizonts. No cross-resistance with strains resistant to other known antimalarials was noted. In addition, a similar level of growth inhibition was observed against clinical field isolates of Pf and P. vivax. The slow killing profile and the relative high propensity to develop resistance in vitro (minimum inoculum resistance of 8 × 105 parasites at a selection pressure of 3 × IC50) constitute unfavorable features for treatment of malaria. However, potent blood stage and antischizontal activity are compelling for causal prophylaxis which does not require fast onset of action. Achieving sufficient on-target selectivity appears to be particularly challenging and should be the primary focus during the next steps of optimization of this chemical series. Encouraging preliminary off-target profile and oral efficacy in a humanized murine model of Pf malaria allowed us to conclude that 1-(pyridin-4-yl)pyrrolidin-2-one derivatives represent a promising starting point for the identification of novel antimalarial prophylactic agents that selectively target Plasmodium PRS.


Subject(s)
Amino Acyl-tRNA Synthetases , Antimalarials , Malaria, Falciparum , Malaria , Animals , Antimalarials/pharmacology , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Mice , Plasmodium falciparum
7.
J Med Chem ; 64(5): 2739-2761, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33620219

ABSTRACT

Malaria control programs continue to be threatened by drug resistance. To identify new antimalarials, we conducted a phenotypic screen and identified a novel tetrazole-based series that shows fast-kill kinetics and a relatively low propensity to develop high-level resistance. Preliminary structure-activity relationships were established including identification of a subseries of related amides with antiplasmodial activity. Assaying parasites with resistance to antimalarials led us to test whether the series had a similar mechanism of action to chloroquine (CQ). Treatment of synchronized Plasmodium falciparum parasites with active analogues revealed a pattern of intracellular inhibition of hemozoin (Hz) formation reminiscent of CQ's action. Drug selections yielded only modest resistance that was associated with amplification of the multidrug resistance gene 1 (pfmdr1). Thus, we have identified a novel chemical series that targets the historically druggable heme polymerization pathway and that can form the basis of future optimization efforts to develop a new malaria treatment.


Subject(s)
Amides/pharmacology , Antimalarials/pharmacology , Hemoglobins/metabolism , Plasmodium falciparum/drug effects , Tetrazoles/pharmacology , Amides/chemical synthesis , Amides/pharmacokinetics , Antimalarials/chemical synthesis , Antimalarials/pharmacokinetics , Drug Resistance, Microbial/drug effects , Hemeproteins/antagonists & inhibitors , Hep G2 Cells , Humans , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium falciparum/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Tetrazoles/chemical synthesis , Tetrazoles/pharmacokinetics
8.
J Med Chem ; 63(20): 11902-11919, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32945666

ABSTRACT

Malaria remains one of the most deadly infectious diseases, causing hundreds of thousands of deaths each year, primarily in young children and pregnant mothers. Here, we report the discovery and derivatization of a series of pyrazolo[3,4-b]pyridines targeting Plasmodium falciparum, the deadliest species of the malaria parasite. Hit compounds in this series display sub-micromolar in vitro activity against the intraerythrocytic stage of the parasite as well as little to no toxicity against the human fibroblast BJ and liver HepG2 cell lines. In addition, our hit compounds show good activity against the liver stage of the parasite but little activity against the gametocyte stage. Parasitological profiles, including rate of killing, docking, and molecular dynamics studies, suggest that our compounds may target the Qo binding site of cytochrome bc1.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Pyrazoles/pharmacology , Pyridines/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Cell Line , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
9.
J Med Chem ; 62(20): 9217-9235, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31566384

ABSTRACT

One of the attractive properties of artemisinins is their extremely fast-killing capability, quickly relieving malaria symptoms. Nevertheless, the unique benefits of these medicines are now compromised by the prolonged parasite clearance times and the increasing frequency of treatment failures, attributed to the increased tolerance of Plasmodium falciparum to artemisinin. This emerging artemisinin resistance threatens to undermine the effectiveness of antimalarial combination therapies. Herein, we describe the medicinal chemistry efforts focused on a cGMP-dependent protein kinase (PKG) inhibitor scaffold, leading to the identification of novel chemical entities with very potent, similar to artemisinins, fast-killing potency against asexual blood stages that cause disease, and activity against gametocyte activation that is required for transmission. Furthermore, we confirm that selective PKG inhibitors have a slow speed of kill, while chemoproteomic analysis suggests for the first time serine/arginine protein kinase 2 (SRPK2) targeting as a novel strategy for developing antimalarial compounds with extremely fast-killing properties.


Subject(s)
Antimalarials/pharmacology , Artemisinins/chemistry , Plasmodium falciparum/drug effects , Antimalarials/chemistry , Antimalarials/metabolism , Artemisinins/metabolism , Artemisinins/pharmacology , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/metabolism , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/metabolism , Humans , Inhibitory Concentration 50 , Mutagenesis, Site-Directed , Plasmodium falciparum/growth & development , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Solubility , Structure-Activity Relationship , Thiazoles/chemistry
10.
ChemMedChem ; 14(14): 1329-1335, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31188540

ABSTRACT

Herein we describe the optimization of a phenotypic hit against Plasmodium falciparum based on an aminoacetamide scaffold. This led to N-(3-chloro-4-fluorophenyl)-2-methyl-2-{[4-methyl-3-(morpholinosulfonyl)phenyl]amino}propanamide (compound 28) with low-nanomolar activity against the intraerythrocytic stages of the malaria parasite, and which was found to be inactive in a mammalian cell counter-screen up to 25 µm. Inhibition of gametes in the dual gamete activation assay suggests that this family of compounds may also have transmission blocking capabilities. Whilst we were unable to optimize the aqueous solubility and microsomal stability to a point at which the aminoacetamides would be suitable for in vivo pharmacokinetic and efficacy studies, compound 28 displayed excellent antimalarial potency and selectivity; it could therefore serve as a suitable chemical tool for drug target identification.


Subject(s)
Acetamides/pharmacology , Antimalarials/pharmacology , Acetamides/chemical synthesis , Acetamides/pharmacokinetics , Animals , Antimalarials/chemical synthesis , Antimalarials/pharmacokinetics , Humans , Mice , Microsomes, Liver/metabolism , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium berghei/drug effects , Plasmodium cynomolgi/drug effects , Plasmodium falciparum/drug effects , Structure-Activity Relationship
12.
J Med Chem ; 60(16): 6880-6896, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28806082

ABSTRACT

Since the appearance of resistance to the current front-line antimalarial treatments, ACTs (artemisinin combination therapies), the discovery of novel chemical entities to treat the disease is recognized as a major global health priority. From the GSK antimalarial set, we identified an aminoxadiazole with an antiparasitic profile comparable with artemisinin (1), with no cross-resistance in a resistant strains panel and a potential new mode of action. A medicinal chemistry program allowed delivery of compounds such as 19 with high solubility in aqueous media, an acceptable toxicological profile, and oral efficacy. Further evaluation of the lead compounds showed that in vivo genotoxic degradants might be generated. The compounds generated during this medicinal chemistry program and others from the GSK collection were used to build a pharmacophore model which could be used in the virtual screening of compound collections and potentially identify new chemotypes that could deliver the same antiparasitic profile.


Subject(s)
2,2'-Dipyridyl/analogs & derivatives , Antimalarials/pharmacology , Oxadiazoles/pharmacology , 2,2'-Dipyridyl/administration & dosage , 2,2'-Dipyridyl/chemical synthesis , 2,2'-Dipyridyl/pharmacology , 2,2'-Dipyridyl/toxicity , Animals , Antimalarials/administration & dosage , Antimalarials/chemical synthesis , Antimalarials/toxicity , Atovaquone/pharmacology , Chloroquine/pharmacology , Drug Design , Female , Humans , Hydrazines/metabolism , Mice , Mutagenicity Tests , Mutagens/metabolism , Oxadiazoles/administration & dosage , Oxadiazoles/chemical synthesis , Oxadiazoles/toxicity , Parasitemia/drug therapy , Plasmodium falciparum/drug effects , Pyrimethamine/pharmacology , Structure-Activity Relationship
13.
ACS Cent Sci ; 2(10): 687-701, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27800551

ABSTRACT

The development of new antimalarial compounds remains a pivotal part of the strategy for malaria elimination. Recent large-scale phenotypic screens have provided a wealth of potential starting points for hit-to-lead campaigns. One such public set is explored, employing an open source research mechanism in which all data and ideas were shared in real time, anyone was able to participate, and patents were not sought. One chemical subseries was found to exhibit oral activity but contained a labile ester that could not be replaced without loss of activity, and the original hit exhibited remarkable sensitivity to minor structural change. A second subseries displayed high potency, including activity within gametocyte and liver stage assays, but at the cost of low solubility. As an open source research project, unexplored avenues are clearly identified and may be explored further by the community; new findings may be cumulatively added to the present work.

14.
Bioorg Med Chem Lett ; 26(16): 3938-44, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27432764

ABSTRACT

As part of our medicinal chemistry program's ongoing search for compounds with antimalarial activity, we prepared a series of thiazole analogs and conducted a SAR study analyzing their in vitro activities against the chloroquine-sensitive Plasmodium falciparum 3D7 strain. The results indicate that modifications of the N-aryl amide group linked to the thiazole ring are the most significant in terms of in vitro antimalarial activity, leading to compounds with high antimalarial potency and low cytotoxicity in HepG2 cell lines. Furthermore, the observed SAR implies that non-bulky, electron-withdrawing groups are preferred at ortho position on the phenyl ring, whereas small atoms such as H or F are preferred at para position. Finally, replacement of the phenyl ring by a pyridine affords a compound with similar potency, but with potentially better physicochemical properties which could constitute a new line of research for further studies.


Subject(s)
Antimalarials/chemical synthesis , Drug Design , Thiazoles/chemistry , Antimalarials/pharmacology , Antimalarials/toxicity , Cell Survival/drug effects , Hep G2 Cells , Humans , Plasmodium falciparum/drug effects , Structure-Activity Relationship , Thiazoles/pharmacology , Thiazoles/toxicity
15.
Malar J ; 14: 441, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26542470

ABSTRACT

BACKGROUND: The emergence of Plasmodium falciparum resistance to artemisinins threatens to undermine the effectiveness of artemisinin-based combination anti-malarial therapy. Developing suitable drugs to replace artemisinins requires the identification of new compounds that display rapid parasite killing kinetics. However, no current methods fully meet the requirements to screen large compound libraries for candidates with such properties. This study describes the development and validation of an in vitro parasite viability fast assay for identifying rapidly parasiticidal anti-malarial drugs. METHODS: Parasite killing kinetics were determined by first culturing unlabelled erythrocytes with P. falciparum in the presence of anti-malarial drugs for 24 or 48 h. After removing the drug, samples were added to erythrocytes pre-labelled with intracellular dye to allow their subsequent identification. The ability of viable parasites to re-establish infection in labelled erythrocytes could then be detected by two-colour flow cytometry after tagging of parasite DNA. Thus, double-stained erythrocytes (with the pre-labelled intracellular dye and the parasite DNA dye) result only after establishment of new infections by surviving parasites. The capacity of the test anti-malarial drugs to eliminate viable parasites within 24 or 48 h could, therefore, be determined. RESULTS: The parasite viability fast assay could be completed within 48 h following drug treatment and distinguished between rapidly parasiticidal anti-malarial drugs versus those acting more slowly. The assay was validated against ten standard anti-malarial agents with known properties and results correlated well with established methods. An abbreviated assay, suitable for adaption to medium-high throughput screening, was validated and applied against a set of 20 compounds retrieved from the publically available Medicines for Malaria Venture 'Malaria Box'. CONCLUSION: The quantification of new infections to determine parasite viability offers important advantages over existing methods, and is amenable to medium-high throughput screening. In particular, the parasite viability fast assay allows discrimination of rapidly parasiticidal anti-malarial candidates.


Subject(s)
Antimalarials/pharmacology , Parasitic Sensitivity Tests/methods , Plasmodium falciparum/drug effects , DNA, Protozoan/genetics , DNA, Protozoan/metabolism , Erythrocytes/parasitology , Flow Cytometry , Malaria, Falciparum/drug therapy , Time Factors
16.
J Med Chem ; 58(16): 6448-55, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26222445

ABSTRACT

Screening of the GSK corporate collection, some 1.9 million compounds, against Plasmodium falciparum (Pf), revealed almost 14000 active hits that are now known as the Tres Cantos Antimalarial Set (TCAMS). Followup work by Calderon et al. clustered and computationally filtered the TCAMS through a variety of criteria and reported 47 series containing a total of 522 compounds. From this enhanced set, we identified the carbamoyl triazole TCMDC-134379 (1), a known serine protease inhibitor, as an excellent starting point for SAR profiling. Lead optimization of 1 led to several molecules with improved antimalarial potency, metabolic stabilities in mouse and human liver microsomes, along with acceptable cytotoxicity profiles. Analogue 44 displayed potent in vitro activity (IC50 = 10 nM) and oral activity in a SCID mouse model of Pf infection with an ED50 of 100 and ED90 of between 100 and 150 mg kg(-1), respectively. The results presented encourage further investigations to identify the target of these highly active compounds.


Subject(s)
Antimalarials/chemical synthesis , Antimalarials/pharmacology , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/pharmacology , Triazoles/chemical synthesis , Triazoles/pharmacology , Animals , Antimalarials/metabolism , High-Throughput Screening Assays , Humans , In Vitro Techniques , Malaria/drug therapy , Malaria/psychology , Malaria, Falciparum/drug therapy , Mice , Mice, SCID , Microsomes, Liver/metabolism , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Serine Proteinase Inhibitors/metabolism , Structure-Activity Relationship , Triazoles/metabolism
17.
ChemMedChem ; 8(2): 313-21, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23307663

ABSTRACT

With the aim of fuelling open-source, translational, early-stage drug discovery activities, the results of the recently completed antimycobacterial phenotypic screening campaign against Mycobacterium bovis BCG with hit confirmation in M. tuberculosis H37Rv were made publicly accessible. A set of 177 potent non-cytotoxic H37Rv hits was identified and will be made available to maximize the potential impact of the compounds toward a chemical genetics/proteomics exercise, while at the same time providing a plethora of potential starting points for new synthetic lead-generation activities. Two additional drug-discovery-relevant datasets are included: a) a drug-like property analysis reflecting the latest lead-like guidelines and b) an early lead-generation package of the most promising hits within the clusters identified.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Drug Discovery/methods , Mycobacterium bovis/drug effects , Mycobacterium tuberculosis/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Databases, Pharmaceutical , Hep G2 Cells , High-Throughput Screening Assays , Humans , Microbial Sensitivity Tests , Tuberculosis/drug therapy
18.
PLoS One ; 7(2): e30949, 2012.
Article in English | MEDLINE | ID: mdl-22383983

ABSTRACT

Chemotherapy is still the cornerstone for malaria control. Developing drugs against Plasmodium parasites and monitoring their efficacy requires methods to accurately determine the parasite killing rate in response to treatment. Commonly used techniques essentially measure metabolic activity as a proxy for parasite viability. However, these approaches are susceptible to artefacts, as viability and metabolism are two parameters that are coupled during the parasite life cycle but can be differentially affected in response to drug actions. Moreover, traditional techniques do not allow to measure the speed-of-action of compounds on parasite viability, which is an essential efficacy determinant. We present here a comprehensive methodology to measure in vitro the direct effect of antimalarial compounds over the parasite viability, which is based on limiting serial dilution of treated parasites and re-growth monitoring. This methodology allows to precisely determine the killing rate of antimalarial compounds, which can be quantified by the parasite reduction ratio and parasite clearance time, which are key mode-of-action parameters. Importantly, we demonstrate that this technique readily permits to determine compound killing activities that might be otherwise missed by traditional, metabolism-based techniques. The analysis of a large set of antimalarial drugs reveals that this viability-based assay allows to discriminate compounds based on their antimalarial mode-of-action. This approach has been adapted to perform medium throughput screening, facilitating the identification of fast-acting antimalarial compounds, which are crucially needed for the control and possibly the eradication of malaria.


Subject(s)
Antimalarials/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Animals , Cell Culture Techniques/methods , Drug Evaluation, Preclinical , Humans , Hypoxanthine/chemistry , Inhibitory Concentration 50 , Reproducibility of Results , Time Factors , Treatment Outcome
19.
Antimicrob Agents Chemother ; 55(12): 5740-5, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21968362

ABSTRACT

Malaria is one of the deadliest infectious diseases in the world, with the eukaryotic parasite Plasmodium falciparum causing the most severe form of the disease. Discovery of new classes of antimalarial drugs has become an urgent task to counteract the increasing problem of drug resistance. Screening directly for compounds able to inhibit parasite growth in vitro is one of the main approaches the malaria research community is now pursuing for the identification of novel antimalarial drug leads. Very recently, thousands of compounds with potent activity against the parasite P. falciparum have been identified and information about their molecular descriptors, antiplasmodial potency, and cytotoxicity is publicly available. Now the challenges are how to identify the most promising chemotypes for further development and how best to progress these compounds through a lead optimization program to generate antimalarial drug candidates. We report here the first chemical series to be characterized from one of those screenings, a completely novel chemical class with the generic name cyclopropyl carboxamides that has never before been described as having antimalarial or other pharmacological activities. Cyclopropyl carboxamides are potent inhibitors of drug-sensitive and -resistant strains of P. falciparum in vitro and show in vivo oral efficacy in malaria mouse models. In the present work, we describe the biological characterization of this chemical family, showing that inhibition of their still unknown target has very favorable pharmacological consequences but the compounds themselves seem to select for resistance at a high frequency.


Subject(s)
Amides , Antimalarials , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Amides/chemistry , Amides/pharmacology , Amides/therapeutic use , Amides/toxicity , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antimalarials/toxicity , Cell Line , Erythrocytes/parasitology , Female , Humans , Malaria, Falciparum/parasitology , Mice , Mice, Inbred NOD , Mice, SCID , Parasitic Sensitivity Tests , Plasmodium falciparum/growth & development , Structure-Activity Relationship , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...