Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Biol Res ; 55(1): 37, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36461078

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) has glucose variability that is of such relevance that the appearance of vascular complications in patients with DM has been attributed to hyperglycemic and dysglycemic events. It is known that T1D patients mainly have glycemic variability with a specific oscillatory pattern with specific circadian characteristics for each patient. However, it has not yet been determined whether an oscillation pattern represents the variability of glycemic in T2D. This is why our objective is to determine the characteristics of glycemic oscillations in T2D and generate a robust predictive model. RESULTS: Showed that glycosylated hemoglobin, glycemia, and body mass index were all higher in patients with T2D than in controls (all p < 0.05). In addition, time in hyperglycemia and euglycemia was markedly higher and lower in the T2D group (p < 0.05), without significant differences for time in hypoglycemia. Standard deviation, coefficient of variation, and total power of glycemia were significantly higher in the T2D group than Control group (all p < 0.05). The oscillatory patterns were significantly different between groups (p = 0.032): the control group was mainly distributed at 2-3 and 6 days, whereas the T2D group showed a more homogeneous distribution across 2-3-to-6 days. CONCLUSIONS: The predictive model of glycemia showed that it is possible to accurately predict hyper- and hypoglycemia events. Thus, T2D patients exhibit specific oscillatory patterns of glycemic control, which are possible to predict. These findings may help to improve the treatment of DM by considering the individual oscillatory patterns of patients.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemia , Humans , Diabetes Mellitus, Type 2/complications , Blood Glucose , Glucose
2.
Biol. Res ; 55: 37-37, 2022. ilus, tab
Article in English | LILACS | ID: biblio-1429902

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) has glucose variability that is of such relevance that the appearance of vascular complications in patients with DM has been attributed to hyperglycemic and dysglycemic events. It is known that T1D patients mainly have glycemic variability with a specific oscillatory pattern with specific circadian characteristics for each patient. However, it has not yet been determined whether an oscillation pattern represents the variability of glycemic in T2D. This is why our objective is to determine the characteristics of glycemic oscillations in T2D and generate a robust predictive model. RESULTS: Showed that glycosylated hemoglobin, glycemia, and body mass index were all higher in patients with T2D than in controls (all p < 0.05). In addition, time in hyperglycemia and euglycemia was markedly higher and lower in the T2D group (p < 0.05), without significant differences for time in hypoglycemia. Standard deviation, coefficient of variation, and total power of glycemia were significantly higher in the T2D group than Control group (all p < 0.05). The oscillatory patterns were significantly different between groups (p = 0.032): the control group was mainly distributed at 2-3 and 6 days, whereas the T2D group showed a more homogeneous distribution across 2-3-to-6 days. CONCLUSIONS: The predictive model of glycemia showed that it is possible to accurately predict hyper- and hypo-glycemia events. Thus, T2D patients exhibit specific oscillatory patterns of glycemic control, which are possible to predict. These findings may help to improve the treatment of DM by considering the individual oscillatory patterns of patients.


Subject(s)
Humans , Diabetes Mellitus, Type 2/complications , Hypoglycemia , Blood Glucose , Glucose
3.
Sci Rep ; 11(1): 5789, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707491

ABSTRACT

Daily glucose variability is higher in diabetic mellitus (DM) patients which has been related to the severity of the disease. However, it is unclear whether glycemic variability displays a specific pattern oscillation or if it is completely random. Thus, to determine glycemic variability pattern, we measured and analyzed continuous glucose monitoring (CGM) data, in control subjects and patients with DM type-1 (T1D). CGM data was assessed for 6 days (day: 08:00-20:00-h; and night: 20:00-08:00-h). Participants (n = 172; age = 18-80 years) were assigned to T1D (n = 144, females = 65) and Control (i.e., healthy; n = 28, females = 22) groups. Anthropometry, pharmacologic treatments, glycosylated hemoglobin (HbA1c) and years of evolution were determined. T1D females displayed a higher glycemia at 10:00-14:00-h vs. T1D males and Control females. DM patients displays mainly stationary oscillations (deterministic), with circadian rhythm characteristics. The glycemia oscillated between 2 and 6 days. The predictive model of glycemia showed that it is possible to predict hyper and hypoglycemia (R2 = 0.94 and 0.98, respectively) in DM patients independent of their etiology. Our data showed that glycemic variability had a specific oscillation pattern with circadian characteristics, with episodes of hypoglycemia and hyperglycemia at day phases, which could help therapeutic action for this population.


Subject(s)
Diabetes Mellitus, Type 1/blood , Glycemic Control , Adult , Blood Glucose/metabolism , Case-Control Studies , Circadian Rhythm , Female , Glycated Hemoglobin/metabolism , Humans , Hyperglycemia/blood , Hypoglycemia/blood , Male , Middle Aged , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...