Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 650(Pt A): 560-572, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37429163

ABSTRACT

Despite the large number of synthesis methodologies described for superparamagnetic iron oxide nanoparticles (SPIONs), the search for their large-scale production for their widespread use in biomedical applications remains a mayor challenge. Flame Spray Pyrolysis (FSP) could be the solution to solve this limitation, since it allows the fabrication of metal oxide nanoparticles with high production yield and low manufacture costs. However, to our knowledge, to date such fabrication method has not been upgraded for biomedical purposes. Herein, SPIONs have been fabricated by FSP and their surface has been treated to be subsequently coated with dimercaptosuccinic acid (DMSA) to enhance their colloidal stability in aqueous media. The final material presents high quality in terms of nanoparticle size, homogeneous size distribution, long-term colloidal stability and magnetic properties. A thorough in vitro validation has been performed with peripheral blood cells and mesenchymal stem cells (hBM-MSCs). Specifically, hemocompatibility studies show that these functionalized FSP-SPIONs-DMSA nanoparticles do not cause platelet aggregation or impair basal monocyte function. Moreover, in vitro biocompatibility assays show a dose-dependent cellular uptake while maintaining high cell viability values and cell cycle progression without causing cellular oxidative stress. Taken together, the results suggest that the FSP-SPIONs-DMSA optimized in this work could be a worthy alternative with the benefit of a large-scale production aimed at industrialization for biomedical applications.


Subject(s)
Magnetite Nanoparticles , Pyrolysis , Magnetic Iron Oxide Nanoparticles , Oxidative Stress , Succimer
2.
Food Chem Toxicol ; 132: 110657, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31276746

ABSTRACT

The increasing use of silver nanoparticles (AgNPs) in consumer products has led to concern about their impact on human health. This paper aims to provide new scientific evidence about the modifications and potential effects of AgNPs with food applications during their passage through the digestive tract. For that, two types of AgNPs [solid polyethylene glycol-stabilised silver nanoparticles (PEG-AgNPs 20) and liquid glutathione-stabilised silver nanoparticles (GSH-AgNPs)] were initially subjected to gut-microbial digestion simulation in an in vitro static model. Based on these experiments, digestion of GSH-AgNPs was carried out in a dynamic model (simgi®) that simulated the different regions of the digestive tract (stomach, small intestine and the ascending, transverse and descending colon) in physiological conditions. Dynamic transport of GSH-AgNPs in the simgi® was similar to that observed for the inert compound Cr-EDTA, which discarded any alterations in the intestinal fluid delivery due to the AgNPs. Also, feeding the simgi® with GSH-AgNPs seemed not to induce significant changes in the composition and metabolic activity (i.e., proteolytic activity) of the gut microbiota. Concerning monitoring of AgNps, it was observed that the GSH-AgNPs underwent several transformations in the gastrointestinal fluids and appeared to expose the intestine in ways that were structurally different from the original forms. In compliance with European guidelines, the simgi® model can be considered a useful in vitro tool to evaluate the effects of nanoparticles at the digestive level, prior to human studies, and, therefore, minimising animal testing.


Subject(s)
Bacteria/metabolism , Gastrointestinal Microbiome/physiology , Metal Nanoparticles/chemistry , Models, Biological , Silver/chemistry , Ammonium Compounds/analysis , Edetic Acid/metabolism , Glutathione/chemistry , Metal Nanoparticles/analysis , Particle Size , Polyethylene Glycols/chemistry , Silver/analysis
3.
Polymers (Basel) ; 11(4)2019 Apr 06.
Article in English | MEDLINE | ID: mdl-30959918

ABSTRACT

The brittleness of acrylic photopolymers, frequently used in 3D Inkjet printing, limits their utilization in structural applications. In this study, a process was developed for the production and characterization of an alumina-enhanced nanocomposite with improved mechanical properties for Inkjet printing. Ceramic nanoparticles with an average primary particle size (APPS) of 16 nm and 31 nm, which was assessed via high-resolution scanning electron microscopy (HRSEM), were functionalized with 3.43 and 5.59 mg/m² 3-(trimethoxysilyl)propyl methacrylate (MPS), respectively, while being ground in a ball mill. The suspensions of the modified fillers in a newly formulated acrylic mixture showed viscosities of 14 and 7 mPa∙s at the printing temperature of 60 °C. Ink-jetting tests were conducted successfully without clogging the printing nozzles. Tensile tests of casted specimens showed an improvement of the tensile strength and elongation at break in composites filled with 31 nm by 10.7% and 74.9%, respectively, relative to the unfilled polymer.

4.
Chem Commun (Camb) ; 51(93): 16691-4, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26430906

ABSTRACT

Ultrathin Au-Ag alloy nanorods and nanowires of different lengths and ca. 1.9 nm diameter are prepared through a low-temperature decomposition of the precursor [Au2Ag2(C6F5)4(OEt2)2]n in oleic acid. This nanostructure formation has been studied through TEM, HRTEM, EDS, HS-SPME-GC-MS and (19)F NMR spectroscopy. The UNRs and UNWs display a length-dependent broad band in the mid-IR region that is related to the longitudinal mode of the surface plasmon resonance of the ultrathin nanostructures.

5.
Dalton Trans ; 43(42): 15713-8, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25245422

ABSTRACT

Ultrasmall gold nanoparticles (Au UNPs) represent a unique class of nanomaterials making them very attractive for certain applications. Herein, we developed an organometallic approach to the synthesis of Au UNPs stabilized with the C18H37-NHC ligand by the solvent free thermolysis of [RMIM][Au(C6F5)2] () or [Au(C6F5)(RNHC)] () (with R = C18H37-), by controlling the reactivity of pentafluorophenyl ligands as deprotonating or reductive elimination agents; Au UNPs can be achieved by solvent free thermolysis. Pentafluorophenyl Au(i) complexes and are synthesized from the corresponding ionic and neutral precursors. The presence of long alkyl chain imidazolium or carbene species in the complexes makes them to behave as isotropic liquids at moderate temperatures. The use of multinuclear NMR allows the description of the mechanism of formation of the UNPs as well as the surface state of the UNPs.

SELECTION OF CITATIONS
SEARCH DETAIL
...